Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2 | |
import numpy as np | |
import tempfile | |
import time | |
from ultralytics import YOLO | |
from huggingface_hub import hf_hub_download | |
from email.mime.text import MIMEText | |
from email.mime.multipart import MIMEMultipart | |
from email.mime.base import MIMEBase | |
from email import encoders | |
import os | |
import smtplib | |
from transformers import AutoModel, AutoProcessor | |
from PIL import Image, ImageDraw, ImageFont | |
import re | |
import torch | |
# Email credentials | |
FROM_EMAIL = "[email protected]" | |
EMAIL_PASSWORD = "cawxqifzqiwjufde" # App-Specific Password | |
TO_EMAIL = "[email protected]" | |
SMTP_SERVER = 'smtp.gmail.com' | |
SMTP_PORT = 465 | |
# Arabic dictionary for converting license plate text | |
arabic_dict = { | |
"0": "٠", "1": "١", "2": "٢", "3": "٣", "4": "٤", "5": "٥", | |
"6": "٦", "7": "٧", "8": "٨", "9": "٩", "A": "ا", "B": "ب", | |
"J": "ح", "D": "د", "R": "ر", "S": "س", "X": "ص", "T": "ط", | |
"E": "ع", "G": "ق", "K": "ك", "L": "ل", "Z": "م", "N": "ن", | |
"H": "ه", "U": "و", "V": "ي", " ": " " | |
} | |
# Color mapping for different classes | |
class_colors = { | |
0: (0, 255, 0), # Green (Helmet) | |
1: (255, 0, 0), # Blue (License Plate) | |
2: (0, 0, 255), # Red (MotorbikeDelivery) | |
3: (255, 255, 0), # Cyan (MotorbikeSport) | |
4: (255, 0, 255), # Magenta (No Helmet) | |
5: (0, 255, 255), # Yellow (Person) | |
} | |
# Load the OCR model | |
processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True) | |
model_ocr = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True).to('cuda') | |
# Define lane area coordinates (example coordinates) | |
red_lane = np.array([[2, 1583], [1, 1131], [1828, 1141], [1912, 1580]], np.int32) | |
# YOLO inference function | |
def run_yolo(image): | |
results = model(image) | |
return results | |
# Function to process YOLO results and draw bounding boxes | |
def process_results(results, image): | |
boxes = results[0].boxes | |
for box in boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0]) | |
conf = box.conf[0] | |
cls = int(box.cls[0]) | |
label = model.names[cls] | |
color = class_colors.get(cls, (255, 255, 255)) | |
# Draw rectangle and label | |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) | |
cv2.putText(image, f"{label} {conf:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
return image | |
# Process uploaded images | |
def process_image(uploaded_file): | |
image = np.array(cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)) | |
results = run_yolo(image) | |
processed_image = process_results(results, image) | |
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB) | |
st.image(processed_image_rgb, caption='Detected Image', use_column_width=True) | |
# Create a download button for the processed image | |
im_pil = Image.fromarray(processed_image_rgb) | |
im_pil.save("processed_image.png") | |
with open("processed_image.png", "rb") as file: | |
btn = st.download_button( | |
label="Download Processed Image", | |
data=file, | |
file_name="processed_image.png", | |
mime="image/png" | |
) | |
# Process and save uploaded videos | |
# Define the function to process the video | |
def process_video_and_save(uploaded_file): | |
# Path for Arabic font | |
font_path = "alfont_com_arial-1.ttf" | |
# Paths for saving violation images | |
violation_image_path = 'violation.jpg' | |
# Track emails already sent to avoid duplicate emails | |
sent_emails = {} | |
# Dictionary to track violations per license plate | |
violations_dict = {} | |
# Paths for saving violation images and videos | |
video_path = "uploaded_video.mp4" | |
output_video_path = 'output_violation.mp4' | |
# Save the uploaded video file to this path | |
with open(video_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
st.error("Error opening video file.") | |
return None | |
# Codec and output settings | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) | |
margin_y = 50 | |
# Process frames | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break # End of video | |
# Draw the red lane rectangle on each frame | |
cv2.polylines(frame, [red_lane], isClosed=True, color=(0, 0, 255), thickness=3) # Red lane | |
# Perform detection using YOLO on the current frame | |
results = model.track(frame) | |
# Process each detection in the results | |
for box in results[0].boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy()) # Bounding box coordinates | |
label = model.names[int(box.cls)] # Class name (MotorbikeDelivery, Helmet, etc.) | |
color = (255, 0, 0) # Use a fixed color for bounding boxes | |
confidence = box.conf[0].item() | |
# Initialize flags and variables for the violations | |
helmet_violation = False | |
lane_violation = False | |
violation_type = [] | |
# Draw bounding box around detected object | |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3) # 3 is the thickness of the rectangle | |
# Add label to the box (e.g., 'MotorbikeDelivery') | |
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) | |
# Detect MotorbikeDelivery | |
if label == 'MotorbikeDelivery' and confidence >= 0.4: | |
motorbike_crop = frame[max(0, y1 - margin_y):y2, x1:x2] | |
delivery_center = ((x1 + x2) // 2, (y2)) | |
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False) | |
if in_red_lane >= 0: | |
lane_violation = True | |
violation_type.append("In Red Lane") | |
# Perform detection within the cropped motorbike region | |
sub_results = model(motorbike_crop) | |
for result in sub_results[0].boxes: | |
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, result.xyxy[0].cpu().numpy()) # Bounding box coordinates | |
sub_label = model.names[int(result.cls)] | |
sub_color = (255, 0, 0) # Red color for the bounding box of sub-objects | |
# Draw bounding box around sub-detected objects (No_Helmet, License_plate, etc.) | |
cv2.rectangle(motorbike_crop, (sub_x1, sub_y1), (sub_x2, sub_y2), sub_color, 2) | |
cv2.putText(motorbike_crop, sub_label, (sub_x1, sub_y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, sub_color, 2) | |
if sub_label == 'No_Helmet': | |
helmet_violation = True | |
violation_type.append("No Helmet") | |
continue | |
if sub_label == 'License_plate': | |
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2] | |
# Apply OCR if a violation is detected | |
if helmet_violation or lane_violation: | |
# Perform OCR on the license plate | |
cv2.imwrite(violation_image_path, frame) | |
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB)) | |
temp_image_path = 'license_plate.png' | |
license_plate_pil.save(temp_image_path) | |
license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr') | |
filtered_text = filter_license_plate_text(license_plate_text) | |
# Check if the license plate is already detected and saved | |
if filtered_text: | |
# Add the license plate and its violations to the violations dictionary | |
if filtered_text not in violations_dict: | |
violations_dict[filtered_text] = violation_type #{"1234AB":[no_Helmet,In_red_Lane]} | |
send_email(filtered_text, violation_image_path, ', '.join(violation_type)) | |
else: | |
# Update the violations for the license plate if new ones are found | |
current_violations = set(violations_dict[filtered_text]) # no helmet | |
new_violations = set(violation_type) # red lane, no helmet | |
updated_violations = list(current_violations | new_violations) # red_lane, no helmet | |
# If new violations are found, update and send email | |
if updated_violations != violations_dict[filtered_text]: | |
violations_dict[filtered_text] = updated_violations | |
send_email(filtered_text, violation_image_path, ', '.join(updated_violations)) | |
# Draw OCR text (English and Arabic) on the original frame | |
arabic_text = convert_to_arabic(filtered_text) | |
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, font_size=30, color=(255, 255, 255)) | |
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, font_size=30, color=(0, 255, 0)) | |
# Write the processed frame to the output video | |
out.write(frame) | |
# Release resources when done | |
cap.release() | |
out.release() | |
if not os.path.exists(output_video_path): | |
st.error("Error: Processed video was not created.") | |
return output_video_path # Return the path of the processed video | |
# Live video feed processing | |
def live_video_feed(): | |
stframe = st.empty() | |
video = cv2.VideoCapture(0) | |
if not video.isOpened(): | |
st.error("Unable to access the webcam.") | |
return | |
while True: | |
ret, frame = video.read() | |
if not ret: | |
st.error("Failed to capture frame.") | |
break | |
# Run YOLO on the captured frame | |
results = run_yolo(frame) | |
annotated_frame = process_results(results, frame) | |
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) | |
# Display the frame with detections | |
stframe.image(annotated_frame_rgb, channels="RGB", use_column_width=True) | |
if st.button("Stop"): | |
break | |
video.release() | |
st.stop() | |
# Function to filter license plate text | |
def filter_license_plate_text(license_plate_text): | |
license_plate_text = re.sub(r'[^A-Z0-9]+', "", license_plate_text) | |
match = re.search(r'(\d{3,4})\s*([A-Z]{2})', license_plate_text) | |
return f"{match.group(1)} {match.group(2)}" if match else None | |
# Function to convert license plate text to Arabic | |
def convert_to_arabic(license_plate_text): | |
return "".join(arabic_dict.get(char, char) for char in license_plate_text) | |
# Function to send email notification with image attachment | |
def send_email(license_text, violation_image_path, violation_type): | |
if violation_type == 'no_helmet': | |
subject = 'تنبيه مخالفة: عدم ارتداء خوذة' | |
body = f"لعدم ارتداء الخوذة ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة." | |
elif violation_type == 'in_red_lane': | |
subject = 'تنبيه مخالفة: دخول المسار الأيسر' | |
body = f"لدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة." | |
elif violation_type == 'no_helmet_in_red_lane': | |
subject = 'تنبيه مخالفة: عدم ارتداء خوذة ودخول المسار الأيسر' | |
body = f"لعدم ارتداء الخوذة ولدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة." | |
msg = MIMEMultipart() | |
msg['From'] = FROM_EMAIL | |
msg['To'] = TO_EMAIL | |
msg['Subject'] = subject | |
msg.attach(MIMEText(body, 'plain')) | |
if os.path.exists(violation_image_path): | |
with open(violation_image_path, 'rb') as attachment_file: | |
part = MIMEBase('application', 'octet-stream') | |
part.set_payload(attachment_file.read()) | |
encoders.encode_base64(part) | |
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(violation_image_path)}') | |
msg.attach(part) | |
with smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) as server: | |
server.login(FROM_EMAIL, EMAIL_PASSWORD) | |
server.sendmail(FROM_EMAIL, TO_EMAIL, msg.as_string()) | |
print("Email with attachment sent successfully!") | |
def draw_text_pil(img, text, position, font_path, font_size, color): | |
img_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
draw = ImageDraw.Draw(img_pil) | |
try: | |
font = ImageFont.truetype(font_path, size=font_size) | |
except IOError: | |
print(f"Font file not found at {font_path}. Using default font.") | |
font = ImageFont.load_default() | |
draw.text(position, text, font=font, fill=color) | |
img_np = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR) | |
return img_np | |
# Streamlit app main function | |
def main(): | |
model_file = hf_hub_download(repo_id="TheKnight115/Yolov8m", filename="yolov8_Medium.pt") | |
global model | |
model = YOLO(model_file) | |
st.title("Motorbike Violation Detection") | |
input_type = st.selectbox("Select Input Type", ("Image", "Video", "Live Feed")) | |
if input_type == "Image": | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
process_image(uploaded_file) | |
elif input_type == "Video": | |
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mov"]) | |
if uploaded_file is not None: | |
output_path = process_video_and_save(uploaded_file) | |
# Now, move the download button here, outside the cached function | |
with open(output_path, "rb") as video_file: | |
btn = st.download_button( | |
label="Download Processed Video", | |
data=video_file, | |
file_name="processed_video.mp4", | |
mime="video/mp4" | |
) | |
elif input_type == "Live Feed": | |
live_video_feed() | |
if __name__ == "__main__": | |
main() | |