Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,26 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load your YOLO model
|
6 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='path/to/yolov8_motorbike_detect_v2_Check.pt')
|
7 |
+
|
8 |
+
# Function for YOLO detection
|
9 |
+
def detect_objects(image):
|
10 |
+
results = model(image)
|
11 |
+
return results
|
12 |
+
|
13 |
+
# Streamlit UI
|
14 |
+
st.title("Motorbike Violation Detection")
|
15 |
+
uploaded_file = st.file_uploader("Upload an image or video", type=["jpg", "jpeg", "png", "mp4"])
|
16 |
+
|
17 |
+
if uploaded_file is not None:
|
18 |
+
if uploaded_file.type == "video/mp4":
|
19 |
+
# Process video here
|
20 |
+
st.video(uploaded_file)
|
21 |
+
# Add video processing code
|
22 |
+
else:
|
23 |
+
# Process image
|
24 |
+
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)
|
25 |
+
results = detect_objects(image)
|
26 |
+
st.image(results.render()[0]) # Display results
|