saritha5 commited on
Commit
49c9018
·
1 Parent(s): 946ed04

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +55 -0
main.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import all the required libraries
2
+
3
+ import pandas as pd
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+
8
+ def prediction(user_data):
9
+ # Importing data from csv
10
+
11
+ df = pd.read_csv('health_insurance.csv')
12
+
13
+ from sklearn.preprocessing import LabelEncoder
14
+
15
+ le_gender = LabelEncoder()
16
+ df['Gender'] = le_gender.fit_transform(df['Gender'])
17
+
18
+ le_vAge = LabelEncoder()
19
+ df['Vehicle_Age'] = le_vAge.fit_transform(df['Vehicle_Age'])
20
+
21
+ le_vDamage = LabelEncoder()
22
+ df['Vehicle_Damage'] = le_vDamage.fit_transform(df['Vehicle_Damage'])
23
+
24
+ x = df.drop('Response', axis = 1)
25
+ y = df['Response']
26
+
27
+ #balancing the data for Target column
28
+ from imblearn.over_sampling import SMOTE
29
+
30
+ smt = SMOTE(k_neighbors=8, random_state=10)
31
+ x_new, y_new = smt.fit_resample(x, y)
32
+ #x_new.shape, y_new.shape
33
+
34
+ #Splitting the data into train and test datasets
35
+
36
+ from sklearn.model_selection import train_test_split
37
+
38
+ xtrain, xtest, ytrain, ytest = train_test_split(x_new, y_new, test_size =.30, random_state = 0)
39
+ #xtrain.shape, xtest.shape, ytrain.shape, ytest.shape
40
+
41
+
42
+ from sklearn.preprocessing import StandardScaler
43
+
44
+ scaler = StandardScaler()
45
+ xtrain = scaler.fit_transform(xtrain)
46
+ xtest = scaler.transform(xtest)
47
+
48
+
49
+ from xgboost import XGBClassifier
50
+
51
+ model_xgb = XGBClassifier()
52
+ model_xgb.fit(xtrain, ytrain)
53
+
54
+ response = model_xgb.predict(user_data)
55
+ return response