saritha5 commited on
Commit
85523c8
·
1 Parent(s): 1e9b2f6

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -62
main.py DELETED
@@ -1,62 +0,0 @@
1
- # import all the required libraries
2
-
3
- import pandas as pd
4
- import numpy as np
5
- import matplotlib.pyplot as plt
6
- import seaborn as sns
7
-
8
-
9
- class cross_sell():
10
- def __init__(self,user_data):
11
- self.user_data = user_data
12
- def prediction(self):
13
- # Importing data from csv
14
-
15
- df = pd.read_csv('health_insurance.csv')
16
-
17
- from sklearn.preprocessing import LabelEncoder
18
-
19
- le_gender = LabelEncoder()
20
- df['Gender'] = le_gender.fit_transform(df['Gender'])
21
-
22
- le_vAge = LabelEncoder()
23
- df['Vehicle_Age'] = le_vAge.fit_transform(df['Vehicle_Age'])
24
-
25
- le_vDamage = LabelEncoder()
26
- df['Vehicle_Damage'] = le_vDamage.fit_transform(df['Vehicle_Damage'])
27
-
28
- x = df.drop('Response', axis = 1)
29
- y = df['Response']
30
-
31
- #balancing the data for Target column
32
- from imblearn.over_sampling import SMOTE
33
-
34
- smt = SMOTE(k_neighbors=8, random_state=10)
35
- x_new, y_new = smt.fit_resample(x, y)
36
- #x_new.shape, y_new.shape
37
-
38
- #Splitting the data into train and test datasets
39
-
40
- from sklearn.model_selection import train_test_split
41
-
42
- xtrain, xtest, ytrain, ytest = train_test_split(x_new, y_new, test_size =.30, random_state = 0)
43
- #xtrain.shape, xtest.shape, ytrain.shape, ytest.shape
44
-
45
-
46
- from sklearn.preprocessing import StandardScaler
47
-
48
- scaler = StandardScaler()
49
- xtrain = scaler.fit_transform(xtrain)
50
- xtest = scaler.transform(xtest)
51
-
52
-
53
- from xgboost import XGBClassifier
54
-
55
- model_xgb = XGBClassifier()
56
- model_xgb.fit(xtrain, ytrain)
57
-
58
- response = model_xgb.predict(self.user_data)
59
- if response==1:
60
- return 'This customer willing to buy a vehicle insurance'
61
- else:
62
- return 'This customer will not buy a vehicle insurance'