File size: 1,191 Bytes
1362442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379f3f
 
 
 
7f26235
1362442
 
f5803bc
 
 
 
 
 
 
 
 
 
 
 
 
1362442
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from detecto import core, utils, visualize
from detecto.visualize import show_labeled_image, plot_prediction_grid
from torchvision import transforms
import matplotlib.pyplot as plt
from tensorflow.keras.utils import img_to_array
import numpy as np
import warnings
import streamlit as st
warnings.filterwarnings("ignore", category=UserWarning) 




MODEL_PATH = "SD_model_weights.pth"
IMAGE_PATH = "img1.jpeg"
model = core.Model.load(MODEL_PATH, ['cross_arm','pole','tag'])
#warnings.warn(msg)

st.title("Object Detection")
image = utils.read_image(IMAGE_PATH) 
predictions = model.predict(image)
labels, boxes, scores = predictions

st.image(IMAGE_PATH)


#def detect_object(IMAGE_PATH):
 #   image = utils.read_image(IMAGE_PATH) 
  #  predictions = model.predict(image)
   # labels, boxes, scores = predictions


    #thresh=0.2
    #filtered_indices=np.where(scores>thresh)
    #filtered_scores=scores[filtered_indices]
    #filtered_boxes=boxes[filtered_indices]
    #num_list = filtered_indices[0].tolist()
    #filtered_labels = [labels[i] for i in num_list]
    #visualize.show_labeled_image(image, filtered_boxes, filtered_labels)
    #img_array = img_to_array(img)