Commit
Β·
7dfd834
0
Parent(s):
Duplicate from huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
Browse files- .gitattributes +27 -0
- .gitignore +1 -0
- README.md +13 -0
- app.css +37 -0
- app.py +238 -0
- utils.py +68 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/*
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Deep Reinforcement Learning Leaderboard
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.0.20
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.css
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
.infoPoint h1 {
|
3 |
+
font-size: 30px;
|
4 |
+
text-decoration: bold;
|
5 |
+
|
6 |
+
}
|
7 |
+
|
8 |
+
a {
|
9 |
+
text-decoration: underline;
|
10 |
+
color: #1f3b54 ;
|
11 |
+
}
|
12 |
+
|
13 |
+
table {
|
14 |
+
|
15 |
+
margin: 25px 0;
|
16 |
+
font-size: 0.9em;
|
17 |
+
font-family: sans-serif;
|
18 |
+
min-width: 400px;
|
19 |
+
box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
|
20 |
+
}
|
21 |
+
|
22 |
+
table th,
|
23 |
+
table td {
|
24 |
+
padding: 12px 15px;
|
25 |
+
}
|
26 |
+
|
27 |
+
tr {
|
28 |
+
text-align: left;
|
29 |
+
}
|
30 |
+
thead tr {
|
31 |
+
text-align: left;
|
32 |
+
}
|
33 |
+
|
34 |
+
.flex
|
35 |
+
{
|
36 |
+
overflow:auto;
|
37 |
+
}
|
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
from tqdm.auto import tqdm
|
4 |
+
from utils import *
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from huggingface_hub import HfApi, hf_hub_download
|
8 |
+
from huggingface_hub.repocard import metadata_load
|
9 |
+
|
10 |
+
class DeepRL_Leaderboard:
|
11 |
+
def __init__(self) -> None:
|
12 |
+
self.leaderboard= {}
|
13 |
+
|
14 |
+
def add_leaderboard(self,id=None, title=None):
|
15 |
+
if id is not None and title is not None:
|
16 |
+
id = id.strip()
|
17 |
+
title = title.strip()
|
18 |
+
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}})
|
19 |
+
|
20 |
+
def get_data(self):
|
21 |
+
return self.leaderboard
|
22 |
+
|
23 |
+
def get_ids(self):
|
24 |
+
return list(self.leaderboard.keys())
|
25 |
+
|
26 |
+
# CSS file for the
|
27 |
+
with open('app.css','r') as f:
|
28 |
+
BLOCK_CSS = f.read()
|
29 |
+
|
30 |
+
LOADED_MODEL_IDS = {}
|
31 |
+
LOADED_MODEL_METADATA = {}
|
32 |
+
|
33 |
+
def get_data(rl_env):
|
34 |
+
global LOADED_MODEL_IDS ,LOADED_MODEL_METADATA
|
35 |
+
data = []
|
36 |
+
model_ids = get_model_ids(rl_env)
|
37 |
+
LOADED_MODEL_IDS[rl_env]=model_ids
|
38 |
+
|
39 |
+
for model_id in tqdm(model_ids):
|
40 |
+
meta = get_metadata(model_id)
|
41 |
+
LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
42 |
+
if meta is None:
|
43 |
+
continue
|
44 |
+
user_id = model_id.split('/')[0]
|
45 |
+
row = {}
|
46 |
+
row["User"] = user_id
|
47 |
+
row["Model"] = model_id
|
48 |
+
accuracy = parse_metrics_accuracy(meta)
|
49 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
50 |
+
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
51 |
+
std_reward = std_reward if not pd.isna(std_reward) else 0
|
52 |
+
row["Results"] = mean_reward - std_reward
|
53 |
+
row["Mean Reward"] = mean_reward
|
54 |
+
row["Std Reward"] = std_reward
|
55 |
+
data.append(row)
|
56 |
+
return pd.DataFrame.from_records(data)
|
57 |
+
|
58 |
+
def get_data_per_env(rl_env):
|
59 |
+
dataframe = get_data(rl_env)
|
60 |
+
dataframe = dataframe.fillna("")
|
61 |
+
|
62 |
+
if not dataframe.empty:
|
63 |
+
# turn the model ids into clickable links
|
64 |
+
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
65 |
+
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
66 |
+
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
67 |
+
if not 'Ranking' in dataframe.columns:
|
68 |
+
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
69 |
+
else:
|
70 |
+
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
71 |
+
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
|
72 |
+
return table_html,dataframe,dataframe.empty
|
73 |
+
else:
|
74 |
+
html = """<div style="color: green">
|
75 |
+
<p> β Please wait. Results will be out soon... </p>
|
76 |
+
</div>
|
77 |
+
"""
|
78 |
+
return html,dataframe,dataframe.empty
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
rl_leaderboard = DeepRL_Leaderboard()
|
83 |
+
rl_leaderboard.add_leaderboard('CartPole-v1','The Cartpole-v1 Leaderboard')
|
84 |
+
rl_leaderboard.add_leaderboard('LunarLander-v2',"The Lunar Lander π Leaderboard")
|
85 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard')
|
86 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard')
|
87 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard')
|
88 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard')
|
89 |
+
rl_leaderboard.add_leaderboard('Taxi-v3','The Taxi-v3π Leaderboard')
|
90 |
+
rl_leaderboard.add_leaderboard('CarRacing-v0'," The Car Racing ποΈ Leaderboard")
|
91 |
+
rl_leaderboard.add_leaderboard('MountainCar-v0',"The Mountain Car β°οΈ π Leaderboard")
|
92 |
+
rl_leaderboard.add_leaderboard('BipedalWalker-v3',"The BipedalWalker Leaderboard")
|
93 |
+
rl_leaderboard.add_leaderboard('SpaceInvadersNoFrameskip-v4','The SpaceInvadersNoFrameskip-v4 Leaderboard')
|
94 |
+
rl_leaderboard.add_leaderboard('Pixelcopter-PLE-v0','The Pixelcopter-PLE-v0 π Leaderboard')
|
95 |
+
rl_leaderboard.add_leaderboard('Pong-PLE-v0','The Pong-PLE-v0 πΎ Leaderboard')
|
96 |
+
rl_leaderboard.add_leaderboard('Walker2DBulletEnv-v0','The Walker2DBulletEnv-v0 π€ Leaderboard')
|
97 |
+
rl_leaderboard.add_leaderboard('AntBulletEnv-v0','The AntBulletEnv-v0 πΈοΈ Leaderboard')
|
98 |
+
rl_leaderboard.add_leaderboard('HalfCheetahBulletEnv-v0','The HalfCheetahBulletEnv-v0 π€ Leaderboard')
|
99 |
+
RL_ENVS = rl_leaderboard.get_ids()
|
100 |
+
RL_DETAILS = rl_leaderboard.get_data()
|
101 |
+
|
102 |
+
|
103 |
+
def update_data(rl_env):
|
104 |
+
global LOADED_MODEL_IDS,LOADED_MODEL_METADATA
|
105 |
+
data = []
|
106 |
+
model_ids = [x for x in get_model_ids(rl_env)] #if x not in LOADED_MODEL_IDS[rl_env]] # For now let's update all
|
107 |
+
|
108 |
+
LOADED_MODEL_IDS[rl_env]+=model_ids
|
109 |
+
|
110 |
+
for model_id in tqdm(model_ids):
|
111 |
+
meta = get_metadata(model_id)
|
112 |
+
LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
113 |
+
if meta is None:
|
114 |
+
continue
|
115 |
+
user_id = model_id.split('/')[0]
|
116 |
+
row = {}
|
117 |
+
row["User"] = user_id
|
118 |
+
row["Model"] = model_id
|
119 |
+
accuracy = parse_metrics_accuracy(meta)
|
120 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
121 |
+
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
122 |
+
std_reward = std_reward if not pd.isna(std_reward) else 0
|
123 |
+
|
124 |
+
row["Results"] = mean_reward - std_reward
|
125 |
+
row["Mean Reward"] = mean_reward
|
126 |
+
row["Std Reward"] = std_reward
|
127 |
+
data.append(row)
|
128 |
+
return pd.DataFrame.from_records(data)
|
129 |
+
|
130 |
+
|
131 |
+
def update_data_per_env(rl_env):
|
132 |
+
global RL_DETAILS
|
133 |
+
|
134 |
+
_,old_dataframe,_ = RL_DETAILS[rl_env]['data']
|
135 |
+
new_dataframe = update_data(rl_env)
|
136 |
+
|
137 |
+
new_dataframe = new_dataframe.fillna("")
|
138 |
+
if not new_dataframe.empty:
|
139 |
+
new_dataframe["User"] = new_dataframe["User"].apply(make_clickable_user)
|
140 |
+
new_dataframe["Model"] = new_dataframe["Model"].apply(make_clickable_model)
|
141 |
+
|
142 |
+
dataframe = pd.concat([old_dataframe,new_dataframe])
|
143 |
+
|
144 |
+
if not dataframe.empty:
|
145 |
+
|
146 |
+
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
147 |
+
if not 'Ranking' in dataframe.columns:
|
148 |
+
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
149 |
+
else:
|
150 |
+
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
151 |
+
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
|
152 |
+
return table_html,dataframe,dataframe.empty
|
153 |
+
else:
|
154 |
+
html = """<div style="color: green">
|
155 |
+
<p> β Please wait. Results will be out soon... </p>
|
156 |
+
</div>
|
157 |
+
"""
|
158 |
+
return html,dataframe,dataframe.empty
|
159 |
+
|
160 |
+
|
161 |
+
def get_info_display(dataframe,env_name,name_leaderboard,is_empty):
|
162 |
+
if not is_empty:
|
163 |
+
markdown = """
|
164 |
+
<div class='infoPoint'>
|
165 |
+
<h1> {name_leaderboard} </h1>
|
166 |
+
<br>
|
167 |
+
<p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} π©βπ. </p>
|
168 |
+
<br>
|
169 |
+
<p> We use <b>lower bound result to sort the models: mean_reward - std_reward.</b> </p>
|
170 |
+
<br>
|
171 |
+
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p>
|
172 |
+
<br>
|
173 |
+
<p> You want to try to train your agents? <a href="http://eepurl.com/h1pElX" target="_blank">Sign up to the Hugging Face free Deep Reinforcement Learning Class π€ </a>.
|
174 |
+
</p>
|
175 |
+
<br>
|
176 |
+
<p> You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo π </a>.
|
177 |
+
</p>
|
178 |
+
</div>
|
179 |
+
""".format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values)))
|
180 |
+
|
181 |
+
else:
|
182 |
+
markdown = """
|
183 |
+
<div class='infoPoint'>
|
184 |
+
<h1> {name_leaderboard} </h1>
|
185 |
+
<br>
|
186 |
+
</div>
|
187 |
+
""".format(name_leaderboard = name_leaderboard)
|
188 |
+
return markdown
|
189 |
+
|
190 |
+
def reload_all_data():
|
191 |
+
|
192 |
+
global RL_DETAILS,RL_ENVS
|
193 |
+
|
194 |
+
for rl_env in RL_ENVS:
|
195 |
+
RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env)
|
196 |
+
|
197 |
+
html = """<div style="color: green">
|
198 |
+
<p> β
Leaderboard updated! </p>
|
199 |
+
</div>
|
200 |
+
"""
|
201 |
+
return html
|
202 |
+
|
203 |
+
|
204 |
+
def reload_leaderboard(rl_env):
|
205 |
+
global RL_DETAILS
|
206 |
+
|
207 |
+
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
208 |
+
|
209 |
+
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
210 |
+
|
211 |
+
return markdown,data_html
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
block = gr.Blocks(css=BLOCK_CSS)
|
219 |
+
with block:
|
220 |
+
notification = gr.HTML("""<div style="color: green">
|
221 |
+
<p> β Updating leaderboard... </p>
|
222 |
+
</div>
|
223 |
+
""")
|
224 |
+
block.load(reload_all_data,[],[notification])
|
225 |
+
|
226 |
+
with gr.Tabs():
|
227 |
+
for rl_env in RL_ENVS:
|
228 |
+
with gr.TabItem(rl_env) as rl_tab:
|
229 |
+
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
230 |
+
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
231 |
+
env_state =gr.Variable(value=f'\"{rl_env}\"')
|
232 |
+
output_markdown = gr.HTML(markdown)
|
233 |
+
|
234 |
+
output_html = gr.HTML(data_html)
|
235 |
+
|
236 |
+
rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])
|
237 |
+
|
238 |
+
block.launch()
|
utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import requests
|
3 |
+
from tqdm.auto import tqdm
|
4 |
+
from huggingface_hub import HfApi, hf_hub_download
|
5 |
+
from huggingface_hub.repocard import metadata_load
|
6 |
+
|
7 |
+
|
8 |
+
# Based on Omar Sanseviero work
|
9 |
+
# Make model clickable link
|
10 |
+
def make_clickable_model(model_name):
|
11 |
+
# remove user from model name
|
12 |
+
model_name_show = ' '.join(model_name.split('/')[1:])
|
13 |
+
|
14 |
+
link = "https://huggingface.co/" + model_name
|
15 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
16 |
+
|
17 |
+
# Make user clickable link
|
18 |
+
def make_clickable_user(user_id):
|
19 |
+
link = "https://huggingface.co/" + user_id
|
20 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def get_model_ids(rl_env):
|
25 |
+
api = HfApi()
|
26 |
+
models = api.list_models(filter=rl_env)
|
27 |
+
model_ids = [x.modelId for x in models]
|
28 |
+
return model_ids
|
29 |
+
|
30 |
+
def get_metadata(model_id):
|
31 |
+
try:
|
32 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
33 |
+
return metadata_load(readme_path)
|
34 |
+
except requests.exceptions.HTTPError:
|
35 |
+
# 404 README.md not found
|
36 |
+
return None
|
37 |
+
|
38 |
+
def parse_metrics_accuracy(meta):
|
39 |
+
if "model-index" not in meta:
|
40 |
+
return None
|
41 |
+
result = meta["model-index"][0]["results"]
|
42 |
+
metrics = result[0]["metrics"]
|
43 |
+
accuracy = metrics[0]["value"]
|
44 |
+
return accuracy
|
45 |
+
|
46 |
+
# We keep the worst case episode
|
47 |
+
def parse_rewards(accuracy):
|
48 |
+
default_std = -1000
|
49 |
+
default_reward=-1000
|
50 |
+
if accuracy != None:
|
51 |
+
accuracy = str(accuracy)
|
52 |
+
parsed = accuracy.split(' +/- ')
|
53 |
+
if len(parsed)>1:
|
54 |
+
mean_reward = float(parsed[0])
|
55 |
+
std_reward = float(parsed[1])
|
56 |
+
elif len(parsed)==1: #only mean reward
|
57 |
+
mean_reward = float(parsed[0])
|
58 |
+
std_reward = float(0)
|
59 |
+
|
60 |
+
else:
|
61 |
+
mean_reward = float(default_std)
|
62 |
+
std_reward = float(default_reward)
|
63 |
+
|
64 |
+
else:
|
65 |
+
mean_reward = float(default_std)
|
66 |
+
std_reward = float(default_reward)
|
67 |
+
return mean_reward, std_reward
|
68 |
+
|