Spaces:
Running
on
A100
Running
on
A100
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
def pad_camera_extrinsics_4x4(extrinsics): | |
if extrinsics.shape[-2] == 4: | |
return extrinsics | |
padding = torch.tensor([[0, 0, 0, 1]]).to(extrinsics) | |
if extrinsics.ndim == 3: | |
padding = padding.unsqueeze(0).repeat(extrinsics.shape[0], 1, 1) | |
extrinsics = torch.cat([extrinsics, padding], dim=-2) | |
return extrinsics | |
def center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): | |
""" | |
Create OpenGL camera extrinsics from camera locations and look-at position. | |
camera_position: (M, 3) or (3,) | |
look_at: (3) | |
up_world: (3) | |
return: (M, 3, 4) or (3, 4) | |
""" | |
# by default, looking at the origin and world up is z-axis | |
if look_at is None: | |
look_at = torch.tensor([0, 0, 0], dtype=torch.float32) | |
if up_world is None: | |
up_world = torch.tensor([0, 0, 1], dtype=torch.float32) | |
if camera_position.ndim == 2: | |
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) | |
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) | |
# OpenGL camera: z-backward, x-right, y-up | |
z_axis = camera_position - look_at | |
z_axis = F.normalize(z_axis, dim=-1).float() | |
x_axis = torch.linalg.cross(up_world, z_axis, dim=-1) | |
x_axis = F.normalize(x_axis, dim=-1).float() | |
y_axis = torch.linalg.cross(z_axis, x_axis, dim=-1) | |
y_axis = F.normalize(y_axis, dim=-1).float() | |
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) | |
extrinsics = pad_camera_extrinsics_4x4(extrinsics) | |
return extrinsics | |
def spherical_camera_pose(azimuths: np.ndarray, elevations: np.ndarray, radius=2.5): | |
azimuths = np.deg2rad(azimuths) | |
elevations = np.deg2rad(elevations) | |
xs = radius * np.cos(elevations) * np.cos(azimuths) | |
ys = radius * np.cos(elevations) * np.sin(azimuths) | |
zs = radius * np.sin(elevations) | |
cam_locations = np.stack([xs, ys, zs], axis=-1) | |
cam_locations = torch.from_numpy(cam_locations).float() | |
c2ws = center_looking_at_camera_pose(cam_locations) | |
return c2ws | |
def get_circular_camera_poses(M=120, radius=2.5, elevation=30.0): | |
# M: number of circular views | |
# radius: camera dist to center | |
# elevation: elevation degrees of the camera | |
# return: (M, 4, 4) | |
assert M > 0 and radius > 0 | |
elevation = np.deg2rad(elevation) | |
camera_positions = [] | |
for i in range(M): | |
azimuth = 2 * np.pi * i / M | |
x = radius * np.cos(elevation) * np.cos(azimuth) | |
y = radius * np.cos(elevation) * np.sin(azimuth) | |
z = radius * np.sin(elevation) | |
camera_positions.append([x, y, z]) | |
camera_positions = np.array(camera_positions) | |
camera_positions = torch.from_numpy(camera_positions).float() | |
extrinsics = center_looking_at_camera_pose(camera_positions) | |
return extrinsics | |
def FOV_to_intrinsics(fov, device='cpu'): | |
""" | |
Creates a 3x3 camera intrinsics matrix from the camera field of view, specified in degrees. | |
Note the intrinsics are returned as normalized by image size, rather than in pixel units. | |
Assumes principal point is at image center. | |
""" | |
focal_length = 0.5 / np.tan(np.deg2rad(fov) * 0.5) | |
intrinsics = torch.tensor([[focal_length, 0, 0.5], [0, focal_length, 0.5], [0, 0, 1]], device=device) | |
return intrinsics | |
def get_zero123plus_input_cameras(batch_size=1, radius=4.0, fov=30.0): | |
""" | |
Get the input camera parameters. | |
""" | |
azimuths = np.array([30, 90, 150, 210, 270, 330]).astype(float) | |
elevations = np.array([20, -10, 20, -10, 20, -10]).astype(float) | |
c2ws = spherical_camera_pose(azimuths, elevations, radius) | |
c2ws = c2ws.float().flatten(-2) | |
Ks = FOV_to_intrinsics(fov).unsqueeze(0).repeat(6, 1, 1).float().flatten(-2) | |
extrinsics = c2ws[:, :12] | |
intrinsics = torch.stack([Ks[:, 0], Ks[:, 4], Ks[:, 2], Ks[:, 5]], dim=-1) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
return cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |