Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
random.seed(999)
|
4 |
+
import torch
|
5 |
+
from transformers import Qwen2ForSequenceClassification, AutoTokenizer
|
6 |
+
import gradio as gr
|
7 |
+
from datetime import datetime
|
8 |
+
torch.set_grad_enabled(False)
|
9 |
+
|
10 |
+
model = Qwen2ForSequenceClassification.from_pretrained("Thouph/prompt2tag-qwen2-0.5b-v0.1", num_labels = 9940).to("cuda")
|
11 |
+
model.eval()
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
|
13 |
+
|
14 |
+
with open("tags_9940.json", "r") as file:
|
15 |
+
allowed_tags = json.load(file)
|
16 |
+
|
17 |
+
allowed_tags = sorted(allowed_tags)
|
18 |
+
|
19 |
+
def create_tags(prompt, threshold):
|
20 |
+
inputs = tokenizer(
|
21 |
+
prompt,
|
22 |
+
padding="do_not_pad",
|
23 |
+
max_length=512,
|
24 |
+
truncation=True,
|
25 |
+
return_tensors="pt",
|
26 |
+
)
|
27 |
+
|
28 |
+
for k in inputs.keys():
|
29 |
+
inputs[k] = inputs[k].to("cuda")
|
30 |
+
# Generate
|
31 |
+
output = model(**inputs).logits
|
32 |
+
output = torch.nn.functional.sigmoid(output)
|
33 |
+
indices = torch.where(output > threshold)
|
34 |
+
values = output[indices]
|
35 |
+
indices = indices[1]
|
36 |
+
values = values.squeeze()
|
37 |
+
|
38 |
+
temp = []
|
39 |
+
tag_score = dict()
|
40 |
+
for i in range(indices.size(0)):
|
41 |
+
temp.append([allowed_tags[indices[i]], values[i].item()])
|
42 |
+
tag_score[allowed_tags[indices[i]]] = values[i].item()
|
43 |
+
temp = [t[0] for t in temp]
|
44 |
+
text_no_impl = " ".join(temp)
|
45 |
+
current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
46 |
+
print(f"{current_datetime}: finished.")
|
47 |
+
return text_no_impl, tag_score
|
48 |
+
|
49 |
+
demo = gr.Interface(
|
50 |
+
create_tags,
|
51 |
+
inputs=[
|
52 |
+
gr.TextArea(label="Prompt",),
|
53 |
+
gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="Threshold")
|
54 |
+
],
|
55 |
+
outputs=[
|
56 |
+
gr.Textbox(label="Tag String"),
|
57 |
+
gr.Label(label="Tag Predictions", num_top_classes=200),
|
58 |
+
],
|
59 |
+
allow_flagging="never",
|
60 |
+
)
|
61 |
+
|
62 |
+
demo.launch()
|