import json import random random.seed(999) import torch from transformers import Qwen2ForSequenceClassification, AutoTokenizer import gradio as gr from datetime import datetime torch.set_grad_enabled(False) model = Qwen2ForSequenceClassification.from_pretrained("Thouph/prompt2tag-qwen2-0.5b-v0.1", num_labels = 9940, device_map="cpu") model.eval() tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B") with open("tags_9940.json", "r") as file: allowed_tags = json.load(file) allowed_tags = sorted(allowed_tags) def create_tags(prompt, threshold): inputs = tokenizer( prompt, padding="do_not_pad", max_length=512, truncation=True, return_tensors="pt", ) output = model(**inputs).logits output = torch.nn.functional.sigmoid(output) indices = torch.where(output > threshold) values = output[indices] indices = indices[1] values = values.squeeze() temp = [] tag_score = dict() for i in range(indices.size(0)): temp.append([allowed_tags[indices[i]], values[i].item()]) tag_score[allowed_tags[indices[i]]] = values[i].item() temp = [t[0] for t in temp] text_no_impl = " ".join(temp) current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") print(f"{current_datetime}: finished.") return text_no_impl, tag_score demo = gr.Interface( create_tags, inputs=[ gr.TextArea(label="Prompt",), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="Threshold") ], outputs=[ gr.Textbox(label="Tag String"), gr.Label(label="Tag Predictions", num_top_classes=200), ], allow_flagging="never", ) demo.launch()