Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import time
|
4 |
+
from rank_bm25 import BM25Okapi, BM25Plus
|
5 |
+
import re
|
6 |
+
import numpy as np
|
7 |
+
from underthesea import text_normalize
|
8 |
+
import pandas as pd
|
9 |
+
from pyvi import ViTokenizer
|
10 |
+
import heapq
|
11 |
+
import torch
|
12 |
+
from transformers import AutoModel, AutoTokenizer
|
13 |
+
from pyvi.ViTokenizer import tokenize
|
14 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
+
from sentence_transformers import CrossEncoder
|
16 |
+
import heapq
|
17 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
19 |
+
from sentence_transformers import SentenceTransformer
|
20 |
+
from pyvi.ViTokenizer import tokenize
|
21 |
+
from Levenshtein import ratio as lev
|
22 |
+
from Levenshtein import ratio as lev
|
23 |
+
from openai import OpenAI
|
24 |
+
import re
|
25 |
+
import numpy as np
|
26 |
+
from underthesea import text_normalize
|
27 |
+
|
28 |
+
def chuan_hoa_unicode_go_dau(text):
|
29 |
+
return text_normalize(text)
|
30 |
+
|
31 |
+
def viet_thuong(text):
|
32 |
+
return text.lower()
|
33 |
+
|
34 |
+
def chuan_hoa_dau_cau(text):
|
35 |
+
text = re.sub(r'[^\s\wáàảãạăắằẳẵặâấầẩẫậéèẻẽẹêếềểễệóòỏõọôốồổỗộơớờởỡợíìỉĩịúùủũụưứừửữựýỳỷỹỵđ_]',' ',text)
|
36 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
37 |
+
return text
|
38 |
+
|
39 |
+
def chuan_hoa_cau(doc):
|
40 |
+
pattern = r'(\w)([^\s\w])'
|
41 |
+
result1 = re.sub(pattern, r'\1 \2', doc)
|
42 |
+
|
43 |
+
pattern = r'([^\s\w])(\w)'
|
44 |
+
result2 = re.sub(pattern, r'\1 \2', result1)
|
45 |
+
|
46 |
+
pattern = r'\s+'
|
47 |
+
# Loại bỏ khoảng trắng thừa
|
48 |
+
result = re.sub(pattern, ' ', result2)
|
49 |
+
return result
|
50 |
+
|
51 |
+
def my_pre_processing(doc):
|
52 |
+
doc = chuan_hoa_unicode_go_dau(doc)
|
53 |
+
doc = chuan_hoa_dau_cau(doc)
|
54 |
+
doc = chuan_hoa_cau(doc)
|
55 |
+
doc = viet_thuong(doc)
|
56 |
+
return doc
|
57 |
+
|
58 |
+
|
59 |
+
def levenshtein_similarity(sentence1, sentence2):
|
60 |
+
return lev(sentence1, sentence2)
|
61 |
+
|
62 |
+
def jaccard_similarity(sentence1, sentence2):
|
63 |
+
# Tokenize sentences into words
|
64 |
+
words1 = set(sentence1.lower().split())
|
65 |
+
words2 = set(sentence2.lower().split())
|
66 |
+
|
67 |
+
# Calculate intersection and union of the sets
|
68 |
+
intersection = len(words1.intersection(words2))
|
69 |
+
union = len(words1.union(words2))
|
70 |
+
|
71 |
+
# Calculate Jaccard Similarity
|
72 |
+
jaccard_similarity = intersection / union
|
73 |
+
|
74 |
+
# Define min and max Jaccard similarity scores (0 and 1.0 in this case)
|
75 |
+
min_score = 0.0
|
76 |
+
max_score = 1.0
|
77 |
+
|
78 |
+
# Normalize Jaccard Similarity to range from 0 to 1.0
|
79 |
+
normalized_similarity = (jaccard_similarity - min_score) / (max_score - min_score)
|
80 |
+
|
81 |
+
return normalized_similarity
|
82 |
+
|
83 |
+
def filter_similarity(sentence1, sentence2, debug = False):
|
84 |
+
score_leve = levenshtein_similarity(sentence1, sentence2)
|
85 |
+
score_jac = jaccard_similarity(sentence1, sentence2)
|
86 |
+
|
87 |
+
if debug:
|
88 |
+
print(sentence2)
|
89 |
+
print("Levenshtein similarity", score_leve)
|
90 |
+
print("Jaccard similarity", score_jac)
|
91 |
+
|
92 |
+
return (score_leve + score_jac) / 2
|
93 |
+
|
94 |
+
def top_n_indexes(lst, n):
|
95 |
+
top_items = heapq.nlargest(n, enumerate(lst), key=lambda x: x[1])
|
96 |
+
return [i for i, s in top_items]
|
97 |
+
|
98 |
+
def BM25_retrieval(query, seg_question_corpus, top_BM25):
|
99 |
+
query = my_pre_processing(query)
|
100 |
+
word_tokenized_query = ViTokenizer.tokenize(query).split(" ")
|
101 |
+
# xử lý ở level word với question
|
102 |
+
tokenized_word_question_corpus = [doc.split(" ") for doc in seg_question_corpus]
|
103 |
+
bm25_word_question = BM25Plus(tokenized_word_question_corpus)
|
104 |
+
word_score_question = bm25_word_question.get_scores(word_tokenized_query)
|
105 |
+
BM25_result = top_n_indexes(word_score_question, n=top_BM25)
|
106 |
+
return BM25_result
|
107 |
+
|
108 |
+
def SimCSE_retrieval(query, SimCSE_set, top_Sim):
|
109 |
+
from sentence_transformers import CrossEncoder
|
110 |
+
query = my_pre_processing(query)
|
111 |
+
# Sim_CSE_model_question = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
112 |
+
# Sim_CSE_word_ques_embeddings = torch.load('/content/drive/MyDrive/Study/Năm 3/CS336-IR/model/word_ques_embeddings.pth')
|
113 |
+
Sim_CSE_model_question = SimCSE_set[0]
|
114 |
+
Sim_CSE_word_ques_embeddings = SimCSE_set[1]
|
115 |
+
|
116 |
+
seg_query = ViTokenizer.tokenize(query)
|
117 |
+
query_vector = Sim_CSE_model_question.encode(seg_query)
|
118 |
+
SimCSE_word_scores = list(cosine_similarity([query_vector], Sim_CSE_word_ques_embeddings)[0])
|
119 |
+
SimCSE_result = top_n_indexes(SimCSE_word_scores, n=top_Sim)
|
120 |
+
return SimCSE_result
|
121 |
+
|
122 |
+
def Para_retriveval(query, para_set, top_para):
|
123 |
+
query = my_pre_processing(query)
|
124 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
125 |
+
import torch
|
126 |
+
# retri_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
127 |
+
# para_question_embeddings = torch.load('/content/drive/MyDrive/Study/Năm 3/CS336-IR/model/para_embeddings.pth')
|
128 |
+
retri_model = para_set[0]
|
129 |
+
para_question_embeddings = para_set[1]
|
130 |
+
|
131 |
+
query_embed = retri_model.encode([query], device = device)
|
132 |
+
para_score = cosine_similarity(query_embed, para_question_embeddings)[0]
|
133 |
+
Para_result = top_n_indexes(para_score, n = top_para)
|
134 |
+
return Para_result
|
135 |
+
|
136 |
+
def Rerank(query, retrieval_result, question_corpus, reranker, top_n):
|
137 |
+
#rerank_model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v2'
|
138 |
+
query = my_pre_processing(query)
|
139 |
+
#reranker = CrossEncoder(rerank_model_name)
|
140 |
+
scores = reranker.predict([(query, question_corpus[i]) for i in retrieval_result])
|
141 |
+
id_score = list(zip(retrieval_result, scores))
|
142 |
+
sorted_id_score = sorted(id_score, key=lambda x: x[1], reverse=True)[:(min(len(retrieval_result), top_n))]
|
143 |
+
return sorted_id_score
|
144 |
+
|
145 |
+
def retrieval(query, question_corpus, seg_question_corpus, models, top_n = 15, thread_hold = 0.2, rerank = True):
|
146 |
+
BM25_result = BM25_retrieval(query, seg_question_corpus, top_n)
|
147 |
+
SimCSE_result = SimCSE_retrieval(query, models['Sim_CSE'], top_n)
|
148 |
+
Para_result = Para_retriveval(query, models['para'], top_n)
|
149 |
+
retrieval_result = list(set(BM25_result + SimCSE_result + Para_result))
|
150 |
+
#sents_retri = [question_corpus[i] for i in retrieval_result]
|
151 |
+
|
152 |
+
scores_filter = []
|
153 |
+
while len(scores_filter) == 0 and thread_hold >= 0:
|
154 |
+
scores_filter = []
|
155 |
+
for id in retrieval_result:
|
156 |
+
score = filter_similarity(my_pre_processing(query), question_corpus[id])
|
157 |
+
if score >= thread_hold:
|
158 |
+
scores_filter.append((score, id))
|
159 |
+
thread_hold -= 0.1
|
160 |
+
scores_filter = sorted(scores_filter, key = lambda x : x[0], reverse=True)
|
161 |
+
sent_filter = [i[1] for i in scores_filter]
|
162 |
+
|
163 |
+
if rerank == False:
|
164 |
+
return retrieval_result
|
165 |
+
rerank_result = Rerank(query, sent_filter, question_corpus, models['rerank'], top_n)
|
166 |
+
sent_rerank = [i[0] for i in rerank_result]
|
167 |
+
sent_rerank.append(-1)
|
168 |
+
|
169 |
+
score_rerank = [i[1] for i in rerank_result]
|
170 |
+
score_rerank = [(i - min(score_rerank))/(max(score_rerank) - min(score_rerank)) for i in score_rerank]
|
171 |
+
data_rerank = {}
|
172 |
+
for i in sent_rerank:
|
173 |
+
data_rerank[i] = []
|
174 |
+
|
175 |
+
for idx, id in enumerate(sent_rerank):
|
176 |
+
for j in range(idx + 1, len(sent_rerank)):
|
177 |
+
if id == -1:
|
178 |
+
sent1 = my_pre_processing(query)
|
179 |
+
else:
|
180 |
+
sent1 = question_corpus[id]
|
181 |
+
|
182 |
+
if sent_rerank[j] == -1:
|
183 |
+
sent2 = my_pre_processing(query)
|
184 |
+
else:
|
185 |
+
sent2 = question_corpus[sent_rerank[j]]
|
186 |
+
|
187 |
+
score = filter_similarity(sent1, sent2) * score_rerank[idx]
|
188 |
+
data_rerank[id].append(score)
|
189 |
+
data_rerank[sent_rerank[j]].append(score)
|
190 |
+
|
191 |
+
del data_rerank[-1]
|
192 |
+
data_rerank = {key: sum(data)/len(data) for key, data in data_rerank.items()}
|
193 |
+
scores_rerank = [{'corpus_id': key, 'score': score} for key, score in sorted(data_rerank.items(), key = lambda x: x[1], reverse = True)]
|
194 |
+
|
195 |
+
return scores_rerank
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
client = OpenAI(
|
200 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
201 |
+
api_key="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",
|
202 |
+
)
|
203 |
+
|
204 |
+
def chat_gpt(prompt):
|
205 |
+
response = client.chat.completions.create(
|
206 |
+
model="gpt-3.5-turbo",
|
207 |
+
messages=[{"role": "user", "content": prompt}]
|
208 |
+
)
|
209 |
+
return response.choices[0].message.content.strip()
|
210 |
+
|
211 |
+
if torch.cuda.is_available():
|
212 |
+
device = 'cuda'
|
213 |
+
else:
|
214 |
+
device = 'cpu'
|
215 |
+
|
216 |
+
df = pd.read_csv('.\source\corpus.csv')
|
217 |
+
question_corpus = list(df['question_corpus'])
|
218 |
+
seg_question_corpus = list(df['seg_question_corpus'])
|
219 |
+
Sim_CSE_model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
220 |
+
Sim_CSE_word_ques_embeddings = torch.load('.\source\word_ques_embeddings.pth')
|
221 |
+
|
222 |
+
para_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
223 |
+
para_question_embeddings = torch.load('.\source\para_embeddings.pth')
|
224 |
+
|
225 |
+
rerank_model = CrossEncoder('unicamp-dl/mMiniLM-L6-v2-mmarco-v2')
|
226 |
+
|
227 |
+
models = {'rerank': rerank_model, 'para': [para_model, para_question_embeddings], 'Sim_CSE': [Sim_CSE_model, Sim_CSE_word_ques_embeddings]}
|
228 |
+
source_corpus = pd.read_csv("./source/new_tthc.csv")
|
229 |
+
|
230 |
+
def RAG(query):
|
231 |
+
answer = {'query': query}
|
232 |
+
retri_result = retrieval(query, question_corpus, seg_question_corpus, models, top_n = 25, rerank = True)
|
233 |
+
if len(retri_result) == 0:
|
234 |
+
answer['answer'] = "Không tìm thấy thủ tục hành chính phù hợp"
|
235 |
+
return answer
|
236 |
+
corpus_id = retri_result[0]['corpus_id']
|
237 |
+
info = source_corpus.loc[corpus_id]
|
238 |
+
answer['tthc'] = info['PROCEDURE_NAME']
|
239 |
+
prompt = f"Chỉ dựa vào thông tin ngữ cảnh tôi cung cấp để trả lời câu hỏi. Chú ý giản cách dòng hợp lý: \n Câu hỏi: {answer['query']} \n Ngữ cảnh: {info['IMPL_ORDER']}"
|
240 |
+
#print("RAG function Propmt", prompt)
|
241 |
+
answer['answer'] = chat_gpt(prompt)
|
242 |
+
answer['reference'] = f"https://dichvucong.gov.vn/p/home/dvc-tthc-thu-tuc-hanh-chinh-chi-tiet.html?ma_thu_tuc={info['ID']}"
|
243 |
+
return answer
|
244 |
+
|
245 |
+
#print(RAG("tôi muốn biết cách làm biển sổ xe lần lần đầu"))
|
246 |
+
with gr.Blocks() as demo:
|
247 |
+
chatbot = gr.Chatbot()
|
248 |
+
msg = gr.Textbox()
|
249 |
+
clear = gr.ClearButton([msg, chatbot])
|
250 |
+
|
251 |
+
def respond(message, chat_history):
|
252 |
+
answer = RAG(message)
|
253 |
+
bot_message = f"Tên thủ tục hành chính: {answer['tthc']}\nCâu trả lời:\n{answer['answer']}\nNguồn: {answer['reference']}"
|
254 |
+
chat_history.append((message, bot_message))
|
255 |
+
time.sleep(2)
|
256 |
+
return "", chat_history
|
257 |
+
|
258 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
demo.launch(inline = False)
|