Spaces:
Sleeping
Sleeping
File size: 6,668 Bytes
6615a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import streamlit as st
import pandas as pd
import plotly.express as px
#import bar_chart_race as bcr
from raceplotly.plots import barplot
# Configuration and Constants
COUNTRY_MAPPING = {
"Italy, San Marino and the Holy See": "Italy",
"France and Monaco": "France",
"Belgium and Luxembourg": "Belgium",
"China (mainland)": "China",
"United States of America": "United States",
"United Kingdom of Great Britain and Northern Ireland": "United Kingdom",
"Spain and Andorra": "Spain"
}
DEFAULT_COUNTRIES = ["Italy", "France", "Germany"]
YEAR_RANGE = (2000, 2020)
# Data Loading and Processing Functions
@st.cache_data
def load_data(sheet_name):
df = pd.read_excel("dati/fossilco2emission.xlsx", sheet_name=sheet_name)
df_mapped = df.copy()
df_mapped['Country'] = df_mapped['Country'].replace(COUNTRY_MAPPING)
year_cols = list(range(YEAR_RANGE[0], YEAR_RANGE[1] + 1))
selected_cols = ['Country'] + year_cols
return df_mapped[selected_cols].copy()
def process_data_for_line_plot(df, selected_countries, year_range):
mask = df['Country'].isin(selected_countries)
filtered_df = df[mask]
df_melted = filtered_df.melt(
id_vars=['Country'],
value_vars=range(year_range[0], year_range[1] + 1),
var_name='Year',
value_name='Emissions'
)
df_melted['Year'] = pd.to_numeric(df_melted['Year'])
return df_melted
# Visualization Functions
def create_line_plot(data):
fig = px.line(
data,
x='Year',
y='Emissions',
color='Country',
title='CO2 Emissions Over Time',
labels={'Emissions': 'CO2 Emissions per Capita (Mton)'},
hover_data={'Year': True, 'Emissions': ':.2f'}
)
fig.update_layout(height=600, hovermode='x unified')
return fig
def create_animated_choropleth(data, start_year, end_year):
df_map = data.melt(
id_vars=['Country'],
value_vars=range(start_year, end_year + 1),
var_name='Year',
value_name='Emissions'
)
fig_map = px.choropleth(
df_map,
locations='Country',
locationmode='country names',
color='Emissions',
animation_frame='Year',
title='CO2 Emissions per Capita Over Time',
color_continuous_scale='Reds',
range_color=[0, df_map['Emissions'].quantile(0.95)],
labels={'Emissions': 'CO2 Emissions per Capita (Mton)'}
)
fig_map.update_layout(
height=600,
margin=dict(l=0, r=0, t=30, b=0),
updatemenus=[{
'type': 'buttons',
'showactive': False,
'buttons': [
dict(label='Play',
method='animate',
args=[None, {'frame': {'duration': 500, 'redraw': True},
'fromcurrent': True}]),
dict(label='Pause',
method='animate',
args=[[None], {'frame': {'duration': 0, 'redraw': False},
'mode': 'immediate',
'transition': {'duration': 0}}])
]
}]
)
return fig_map
def create_race_plot(df, year_range):
# Prepare data for race plot
# Convert year columns to rows for raceplotly format
df_race = df.melt(
id_vars=['Country'],
value_vars=range(year_range[0], year_range[1] + 1),
var_name='Year',
value_name='Emissions'
)
# Create the race plot
race_plot = barplot(
df_race,
item_column='Country',
value_column='Emissions',
time_column='Year',
top_entries=10,
)
# Plot with custom settings
fig = race_plot.plot(
title='Top 10 Countries by CO2 Emissions',
orientation='horizontal',
item_label='Country',
value_label='CO2 Emissions (Mton)',
time_label='Year: ',
frame_duration=800
)
# fig.update_layout(
# height=700, # Make plot taller
# font=dict(size=12), # Increase base font size
# title_font_size=20, # Larger title
# xaxis_title_font_size=16, # Larger axis titles
# yaxis_title_font_size=16,
# yaxis_tickfont_size=14, # Larger tick labels
# xaxis_tickfont_size=14
# )
return fig
# Main App Function
def main():
st.set_page_config(page_title="CO2 Emissions Dashboard", layout="wide")
st.title("Global CO2 Emissions Dashboard")
# Load Data
df1 = load_data("fossil_CO2_per_capita_by_countr")
df = load_data("fossil_CO2_totals_by_country")
df = df[df['Country'] != 'International Shipping']
df2 = df.copy()[:210]
# Sidebar Controls
#st.sidebar.header("Controls")
#st.sidebar.markdown("---")
st.sidebar.image("dati\SIAM-logo.jpg", width=150)
visualization_type = st.sidebar.radio(
"Choose Visualization",
["Time Series Plot", "Animated World Map", "Bar Chart Race"]
)
# Year range selector (common to both visualizations)
year_range = st.sidebar.slider(
"Select Year Range",
min_value=YEAR_RANGE[0],
max_value=YEAR_RANGE[1],
value=YEAR_RANGE
)
# Conditional controls and display
if visualization_type == "Time Series Plot":
st.subheader("CO2 Emissions Time Series")
# Show country selector only for time series
countries = df1['Country'].unique().tolist()
selected_countries = st.sidebar.multiselect(
"Select countries to compare",
options=countries,
default=DEFAULT_COUNTRIES
)
# Process and display time series plot
df_processed = process_data_for_line_plot(df1, selected_countries, year_range)
fig = create_line_plot(df_processed)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Animated World Map":
st.subheader("Global Emissions Map (Animated)")
fig_map = create_animated_choropleth(df1, year_range[0], year_range[1])
st.plotly_chart(fig_map, use_container_width=True)
else:
st.subheader("Top 10 CO2 Emitters Race")
fig_race = create_race_plot(df2, year_range)
st.plotly_chart(fig_race, use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.markdown(""" GRUPPO 5 (EMANUELA, FULVIO, MARCO, TINSAE) """)
if __name__ == "__main__":
main()
|