Spaces:
Sleeping
Sleeping
File size: 12,924 Bytes
31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 31aad19 bbfa741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import streamlit as st
import pandas as pd
import plotly.express as px
#import bar_chart_race as bcr
from raceplotly.plots import barplot
# Configuration and Constants
COUNTRY_MAPPING = {
"Italy, San Marino and the Holy See": "Italy",
"France and Monaco": "France",
"Belgium and Luxembourg": "Belgium",
"China (mainland)": "China",
"United States of America": "United States",
"United Kingdom of Great Britain and Northern Ireland": "United Kingdom",
"Spain and Andorra": "Spain"
}
DEFAULT_COUNTRIES = ["Italy", "France", "Germany"]
YEAR_RANGE = (2000, 2020)
# Data Loading and Processing Functions
@st.cache_data
def load_data(sheet_name, year_range = (2000, 2020), sector=None):
df = pd.read_excel("dati/fossilco2emission.xlsx", sheet_name=sheet_name)
df_mapped = df.copy()
df_mapped['Country'] = df_mapped['Country'].replace(COUNTRY_MAPPING)
year_cols = list(range(year_range[0], year_range[1] + 1))
if sector:
selected_cols = ['Country', 'Sector'] + year_cols
else:
selected_cols = ['Country'] + year_cols
return df_mapped[selected_cols].copy()
def process_data_for_line_plot(df, selected_countries, year_range):
mask = df['Country'].isin(selected_countries)
filtered_df = df[mask]
df_melted = filtered_df.melt(
id_vars=['Country'],
value_vars=range(year_range[0], year_range[1] + 1),
var_name='Year',
value_name='Emissions'
)
df_melted['Year'] = pd.to_numeric(df_melted['Year'])
return df_melted
# Visualization Functions
def create_line_plot(data):
fig = px.line(
data,
x='Year',
y='Emissions',
color='Country',
title='CO2 Emissions Over Time',
labels={'Emissions': 'CO2 Emissions per Capita (Mton)'},
hover_data={'Year': True, 'Emissions': ':.2f'}
)
fig.update_layout(height=600, hovermode='x unified')
return fig
def create_animated_choropleth(data, start_year, end_year):
df_map = data.melt(
id_vars=['Country'],
value_vars=range(start_year, end_year + 1),
var_name='Year',
value_name='Emissions'
)
fig_map = px.choropleth(
df_map,
locations='Country',
locationmode='country names',
color='Emissions',
animation_frame='Year',
title='CO2 Emissions per Capita Over Time',
color_continuous_scale='Reds',
range_color=[0, df_map['Emissions'].quantile(0.95)],
labels={'Emissions': 'CO2 Emissions per Capita (Mton)'}
)
fig_map.update_layout(
height=600,
margin=dict(l=0, r=0, t=30, b=0),
updatemenus=[{
'type': 'buttons',
'showactive': False,
'buttons': [
dict(label='Play',
method='animate',
args=[None, {'frame': {'duration': 500, 'redraw': True},
'fromcurrent': True}]),
dict(label='Pause',
method='animate',
args=[[None], {'frame': {'duration': 0, 'redraw': False},
'mode': 'immediate',
'transition': {'duration': 0}}])
]
}]
)
return fig_map
def create_race_plot(df, year_range):
# Prepare data for race plot
# Convert year columns to rows for raceplotly format
df_race = df.melt(
id_vars=['Country'],
value_vars=range(year_range[0], year_range[1] + 1),
var_name='Year',
value_name='Emissions'
)
# Create the race plot
race_plot = barplot(
df_race,
item_column='Country',
value_column='Emissions',
time_column='Year',
top_entries=10,
)
# Plot with custom settings
fig = race_plot.plot(
title='Top 10 Countries by CO2 Emissions',
orientation='horizontal',
item_label='Country',
value_label='CO2 Emissions (Mton)',
time_label='Year: ',
frame_duration=800
)
# fig.update_layout(
# height=700, # Make plot taller
# font=dict(size=12), # Increase base font size
# title_font_size=20, # Larger title
# xaxis_title_font_size=16, # Larger axis titles
# yaxis_title_font_size=16,
# yaxis_tickfont_size=14, # Larger tick labels
# xaxis_tickfont_size=14
# )
return fig
def create_covid_impact_plot(df1, df2):
# Create tabs for different COVID analyses
tab1, tab2 = st.tabs(["Global Impact", "Sectoral Impact"])
print(df2.head())
with tab1:
# Global emissions around COVID
years_covid = range(2017, 2023)
global_emissions = df1[df1['Country'] == 'GLOBAL TOTAL']
emissions_covid = global_emissions[list(years_covid)].values[0]
fig_global = px.line(
x=years_covid,
y=emissions_covid,
title='Global CO2 Emissions Around COVID-19',
labels={'x': 'Year', 'y': 'CO2 Emissions (Mt CO2)'}
)
fig_global.add_vline(x=2020, line_dash="dash", line_color="red",
annotation_text="COVID-19")
st.plotly_chart(fig_global, use_container_width=True)
# Calculate and display percentage changes
col1, col2 = st.columns(2)
with col1:
change_2020 = ((emissions_covid[3] - emissions_covid[2])/emissions_covid[2]*100)
st.metric("2020 Emissions Change", f"{change_2020:.1f}%")
with col2:
change_2021 = ((emissions_covid[4] - emissions_covid[3])/emissions_covid[3]*100)
st.metric("2021 Recovery", f"{change_2021:.1f}%")
with tab2:
# Sectoral analysis
sectors = ['Power Industry', 'Industrial Combustion', 'Transport', 'Processes']
sector_data = {}
for sector in sectors:
sector_emissions = df2[(df2['Sector'] == sector) &
(df2['Country'] == 'GLOBAL TOTAL')]
sector_data[sector] = sector_emissions[list(years_covid)].values[0]
# Create DataFrame for plotly
df_sectors = pd.DataFrame(sector_data, index=years_covid).reset_index()
df_sectors_melted = df_sectors.melt('index', var_name='Sector',
value_name='Emissions')
fig_sectors = px.line(
df_sectors_melted,
x='index',
y='Emissions',
color='Sector',
title='CO2 Emissions by Sector Around COVID-19'
)
fig_sectors.add_vline(x=2020, line_dash="dash", line_color="red",
annotation_text="COVID-19")
st.plotly_chart(fig_sectors, use_container_width=True)
# Display sector-specific impacts
st.subheader("Sector Impact (2019-2020)")
cols = st.columns(len(sectors))
for i, sector in enumerate(sectors):
change = ((sector_data[sector][3] - sector_data[sector][2])/
sector_data[sector][2]*100)
cols[i].metric(sector, f"{change:.1f}%")
def create_agreements_timeline(df1):
# Get the global total data
global_data = df1[df1['Country'] == 'GLOBAL TOTAL'].iloc[0]
# Get only the year columns (1970 to 2023)
year_columns = [col for col in df1.columns if str(col).isdigit()]
years = [int(col) for col in year_columns]
values = [global_data[year] for year in years]
# Create the plot using plotly
fig = px.line(
x=years,
y=values,
title='Global CO2 Emissions and Key Climate Agreements',
labels={'x': 'Year', 'y': 'CO2 Emissions (Mt CO2)'}
)
# Add vertical lines for key agreements
agreements = {
1997: 'Kyoto Protocol Adopted',
2005: 'Kyoto Protocol Enforced',
2015: 'Paris Agreement'
}
colors = {'1997': 'red', '2005': 'green', '2015': 'orange'}
for year, agreement in agreements.items():
fig.add_vline(
x=year,
line_dash="dash",
line_color=colors[str(year)],
annotation_text=agreement,
annotation_position="top"
)
# Customize layout
fig.update_layout(
hovermode='x unified',
showlegend=False,
height=600
)
return fig
# Main App Function
def main():
st.set_page_config(page_title="CO2 Emissions Dashboard", layout="wide")
st.title("Global CO2 Emissions Dashboard")
# Load Data
df1 = load_data("fossil_CO2_per_capita_by_countr")
df2 = load_data("fossil_CO2_totals_by_country")
df3 = load_data("fossil_CO2_by_sector_country_su", year_range=(2017, 2023), sector="Sector")
df_covid = load_data("fossil_CO2_totals_by_country", year_range=(2017, 2023))
df_poliicy = load_data("fossil_CO2_totals_by_country", year_range=(1970,2023))
df2 = df2[df2['Country'] != 'International Shipping']
df_only_countries = df2.copy()[:210]
# Sidebar Controls
#st.sidebar.header("Controls")
#st.sidebar.markdown("---")
st.sidebar.image("dati/SIAM-logo.jpg", width=150)
visualization_type = st.sidebar.radio(
"Choose Visualization",
["Time Series Plot", "Animated World Map", "Bar Chart Race", "COVID-19 Impact", "Climate Agreements Timeline"]
)
# Year range selector (common to both visualizations)
year_range = st.sidebar.slider(
"Select Year Range",
min_value=YEAR_RANGE[0],
max_value=YEAR_RANGE[1],
value=YEAR_RANGE
)
# Conditional controls and display
if visualization_type == "Time Series Plot":
st.subheader("CO2 Emissions Time Series")
# Show country selector only for time series
countries = df1['Country'].unique().tolist()
selected_countries = st.sidebar.multiselect(
"Select countries to compare",
options=countries,
default=DEFAULT_COUNTRIES
)
# Process and display time series plot
df_processed = process_data_for_line_plot(df1, selected_countries, year_range)
fig = create_line_plot(df_processed)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Animated World Map":
st.subheader("Global Emissions Map (Animated)")
fig_map = create_animated_choropleth(df1, year_range[0], year_range[1])
st.plotly_chart(fig_map, use_container_width=True)
elif visualization_type == "Climate Agreements Timeline":
st.subheader("Global Emissions and Climate Agreements")
# Add some context about the agreements
with st.expander("About the Climate Agreements"):
st.markdown("""
- **Kyoto Protocol (1997)**: First legally binding agreement to reduce greenhouse gases
- **Kyoto Protocol Enforcement (2005)**: The protocol came into force
- **Paris Agreement (2015)**: Global agreement to limit temperature rise to well below 2°C
""")
# Create and display the plot
fig = create_agreements_timeline(df_poliicy)
st.plotly_chart(fig, use_container_width=True)
# Add some analysis
st.markdown("### Key Observations")
col1, col2, col3 = st.columns(3)
# Calculate some metrics
kyoto_change = ((float(df_poliicy[df_poliicy['Country'] == 'GLOBAL TOTAL'][2005]) -
float(df_poliicy[df_poliicy['Country'] == 'GLOBAL TOTAL'][1997])) /
float(df_poliicy[df_poliicy['Country'] == 'GLOBAL TOTAL'][1997]) * 100)
paris_change = ((float(df_poliicy[df_poliicy['Country'] == 'GLOBAL TOTAL'][2023]) -
float(df_poliicy[df_poliicy['Country'] == 'GLOBAL TOTAL'][2015])) /
float(df_poliicy[df_poliicy['Country'] == 'GLOBAL TOTAL'][2015]) * 100)
with col1:
st.metric("Emissions Change 1997-2005", f"{kyoto_change:.1f}%")
with col2:
st.metric("Emissions Change 2015-2023", f"{paris_change:.1f}%")
with col3:
latest_emissions = float(df_poliicy[df_poliicy['Country'] == 'GLOBAL TOTAL'][2023])
st.metric("Current Emissions (Mt CO2)", f"{latest_emissions:.1f}")
elif visualization_type == "COVID-19 Impact":
st.subheader("COVID-19 Impact Analysis")
create_covid_impact_plot(df_covid, df3)
else:
st.subheader("Top 10 CO2 Emitters Race")
fig_race = create_race_plot(df_only_countries, year_range)
st.plotly_chart(fig_race, use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.markdown(""" GRUPPO 5 (EMANUELA, FULVIO, MARCO, TINSAE) """)
if __name__ == "__main__":
main() |