Spaces:
Running
Running
"""Template Demo for IBM Granite Hugging Face spaces.""" | |
from collections.abc import Iterator | |
from datetime import datetime | |
from pathlib import Path | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from themes.research_monochrome import theme | |
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002 | |
SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024. | |
Today's Date: {today_date}. | |
You are Granite, developed by IBM. You are a helpful AI assistant""" | |
TITLE = "IBM Granite 3.1 8b Instruct" | |
DESCRIPTION = """ | |
<p>Granite 3.1 8b instruct is an open-source LLM supporting a 128k context window. Start with one of the sample prompts | |
or enter your own. Keep in mind that AI can occasionally make mistakes. | |
<span class="gr_docs_link"> | |
<a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a> | |
</span> | |
</p> | |
""" | |
MAX_INPUT_TOKEN_LENGTH = 128_000 | |
MAX_NEW_TOKENS = 1024 | |
TEMPERATURE = 0.7 | |
TOP_P = 0.85 | |
TOP_K = 50 | |
REPETITION_PENALTY = 1.05 | |
#model = AutoModelForCausalLM.from_pretrained( | |
# "ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto" | |
#) | |
#tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct") | |
#tokenizer.use_default_system_prompt = False | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
temperature: float = TEMPERATURE, | |
repetition_penalty: float = REPETITION_PENALTY, | |
top_p: float = TOP_P, | |
top_k: float = TOP_K, | |
max_new_tokens: int = MAX_NEW_TOKENS, | |
) -> Iterator[str]: | |
"""Generate function for chat demo.""" | |
# Build messages | |
conversation = [] | |
conversation.append({"role": "system", "content": SYS_PROMPT}) | |
conversation += chat_history | |
conversation.append({"role": "user", "content": message}) | |
# Convert messages to prompt format | |
input_ids = tokenizer.apply_chat_template( | |
conversation, | |
return_tensors="pt", | |
add_generation_prompt=True, | |
truncation=True, | |
max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens, | |
) | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
css_file_path = Path(Path(__file__).parent / "app.css") | |
head_file_path = Path(Path(__file__).parent / "app_head.html") | |
# advanced settings (displayed in Accordion) | |
temperature_slider = gr.Slider( | |
minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"] | |
) | |
top_p_slider = gr.Slider( | |
minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"] | |
) | |
top_k_slider = gr.Slider( | |
minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"] | |
) | |
repetition_penalty_slider = gr.Slider( | |
minimum=0, | |
maximum=2.0, | |
value=REPETITION_PENALTY, | |
step=0.05, | |
label="Repetition Penalty", | |
elem_classes=["gr_accordion_element"], | |
) | |
max_new_tokens_slider = gr.Slider( | |
minimum=1, | |
maximum=2000, | |
value=MAX_NEW_TOKENS, | |
step=1, | |
label="Max New Tokens", | |
elem_classes=["gr_accordion_element"], | |
) | |
chat_interface_accordion = gr.Accordion(label="Advanced Settings", open=False) | |
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo: | |
gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"]) | |
gr.HTML(DESCRIPTION) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
examples=[ | |
["Explain the concept of quantum computing to someone with no background in physics or computer science."], | |
["What is OpenShift?"], | |
["What's the importance of low latency inference?"], | |
["Help me boost productivity habits."], | |
], | |
example_labels=[ | |
"Explain quantum computing", | |
"What is OpenShift?", | |
"Importance of low latency inference", | |
"Boosting productivity habits", | |
], | |
cache_examples=False, | |
type="messages", | |
additional_inputs=[ | |
temperature_slider, | |
repetition_penalty_slider, | |
top_p_slider, | |
top_k_slider, | |
max_new_tokens_slider, | |
], | |
additional_inputs_accordion=chat_interface_accordion, | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |