Spaces:
Running
Running
from collections.abc import Iterator | |
from datetime import datetime | |
from pathlib import Path | |
from threading import Thread | |
from huggingface_hub import hf_hub_download | |
from themes.research_monochrome import theme | |
from typing import Iterator, List, Dict | |
import requests | |
import json | |
import subprocess | |
import gradio as gr | |
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002 | |
SYS_PROMPT = f"""Today's Date: {today_date}. | |
You are Granite, developed by IBM. You are a helpful AI assistant""" | |
TITLE = "IBM Granite 3.1 3b a800 MoE Instruct from local GGUF server" | |
DESCRIPTION = """ | |
<p>Granite 3.1 3b instruct is an open-source LLM supporting a 128k context window. This demo uses only 2K context. | |
<span class="gr_docs_link"> | |
<a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a> | |
</span> | |
</p> | |
""" | |
LLAMA_CPP_SERVER = "http://127.0.0.1:8081" | |
MAX_NEW_TOKENS = 1024 | |
TEMPERATURE = 0.7 | |
TOP_P = 0.85 | |
TOP_K = 50 | |
REPETITION_PENALTY = 1.05 | |
# download GGUF into local directory | |
gguf_path = hf_hub_download( | |
repo_id="bartowski/granite-3.1-3b-a800m-instruct-GGUF", | |
filename="granite-3.1-3b-a800m-instruct-Q8_0.gguf", | |
local_dir="." | |
) | |
# start llama-server | |
subprocess.run(["chmod", "+x", "llama-server"]) | |
command = ["./llama-server", "-m", "granite-3.1-3b-a800m-instruct-Q8_0.gguf", "-ngl", "0", "--temp", "0.0", "-c", "2048", "-t", "8", "--port", "8081"] | |
process = subprocess.Popen(command) | |
print(f"Llama-server process started with PID {process.pid}") | |
def generate( | |
message: str, | |
chat_history: List[Dict], | |
temperature: float = TEMPERATURE, | |
repetition_penalty: float = REPETITION_PENALTY, | |
top_p: float = TOP_P, | |
top_k: float = TOP_K, | |
max_new_tokens: int = MAX_NEW_TOKENS, | |
) -> Iterator[str]: | |
"""Generate function for chat demo using Llama.cpp server.""" | |
# Build messages | |
conversation = [] | |
conversation.append({"role": "system", "content": SYS_PROMPT}) | |
conversation += chat_history | |
conversation.append({"role": "user", "content": message}) | |
# Prepare the prompt for the Llama.cpp server | |
prompt = "" | |
for item in conversation: | |
if item["role"] == "system": | |
prompt += f"<|system|>\n{item['content']}\n<|file_separator|>\n" | |
elif item["role"] == "user": | |
prompt += f"<|user|>\n{item['content']}\n<|file_separator|>\n" | |
elif item["role"] == "assistant": | |
prompt += f"<|model|>\n{item['content']}\n<|file_separator|>\n" | |
prompt += "<|model|>\n" # Add the beginning token for the assistant | |
# Construct the request payload | |
payload = { | |
"prompt": prompt, | |
"stream": True, # Enable streaming | |
"max_tokens": max_new_tokens, | |
"temperature": temperature, | |
"repeat_penalty": repetition_penalty, | |
"top_p": top_p, | |
"top_k": top_k, | |
"stop": ["<|file_separator|>"], #stops after it sees this | |
} | |
try: | |
# Make the request to the Llama.cpp server | |
with requests.post(f"{LLAMA_CPP_SERVER}/completion", json=payload, stream=True, timeout=60) as response: | |
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) | |
# Stream the response from the server | |
outputs = [] | |
for line in response.iter_lines(): | |
if line: | |
# Decode the line | |
decoded_line = line.decode('utf-8') | |
# Remove 'data: ' prefix if present | |
if decoded_line.startswith("data: "): | |
decoded_line = decoded_line[6:] | |
# Handle potential JSON decoding errors | |
try: | |
json_data = json.loads(decoded_line) | |
text = json_data.get("content", "") # Extract content field. crucial. | |
if text: | |
outputs.append(text) | |
yield "".join(outputs) | |
except json.JSONDecodeError: | |
print(f"JSONDecodeError: {decoded_line}") | |
# Handle the error, potentially skipping the line or logging it. | |
except requests.exceptions.RequestException as e: | |
print(f"Request failed: {e}") | |
yield f"Error: {e}" # Yield an error message to the user | |
except Exception as e: | |
print(f"An unexpected error occurred: {e}") | |
yield f"Error: {e}" # Yield error message | |
css_file_path = Path(Path(__file__).parent / "app.css") | |
# advanced settings (displayed in Accordion) | |
temperature_slider = gr.Slider( | |
minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"] | |
) | |
top_p_slider = gr.Slider( | |
minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"] | |
) | |
top_k_slider = gr.Slider( | |
minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"] | |
) | |
repetition_penalty_slider = gr.Slider( | |
minimum=0, | |
maximum=2.0, | |
value=REPETITION_PENALTY, | |
step=0.05, | |
label="Repetition Penalty", | |
elem_classes=["gr_accordion_element"], | |
) | |
max_new_tokens_slider = gr.Slider( | |
minimum=1, | |
maximum=2000, | |
value=MAX_NEW_TOKENS, | |
step=1, | |
label="Max New Tokens", | |
elem_classes=["gr_accordion_element"], | |
) | |
chat_interface_accordion = gr.Accordion(label="Advanced Settings", open=False) | |
with gr.Blocks(fill_height=True, css_paths=css_file_path, theme=theme, title=TITLE) as demo: | |
gr.HTML(f"<h2>{TITLE}</h2>", elem_classes=["gr_title"]) | |
gr.HTML(DESCRIPTION) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
examples=[ | |
["Explain the concept of quantum computing to someone with no background in physics or computer science."], | |
["What is OpenShift?"], | |
["What's the importance of low latency inference?"], | |
["Help me boost productivity habits."], | |
], | |
example_labels=[ | |
"Explain quantum computing", | |
"What is OpenShift?", | |
"Importance of low latency inference", | |
"Boosting productivity habits", | |
], | |
cache_examples=False, | |
type="messages", | |
additional_inputs=[ | |
temperature_slider, | |
repetition_penalty_slider, | |
top_p_slider, | |
top_k_slider, | |
max_new_tokens_slider, | |
], | |
additional_inputs_accordion=chat_interface_accordion, | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |