"""Template Demo for IBM Granite Hugging Face spaces.""" from collections.abc import Iterator from datetime import datetime from pathlib import Path from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from themes.carbon import theme today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002 SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024. Today's Date: {today_date}. You are Granite, developed by IBM. You are a helpful AI assistant""" TITLE = "IBM Granite 3.1 8b Instruct" DESCRIPTION = """

Granite 3.1 is a general purpose large language model released in the open under an Apache 2.0 license. Granite models support a 128k context length.

Try one of the sample prompts below or write your own. Remember, AI models can make mistakes. View Documentation

""" MAX_INPUT_TOKEN_LENGTH = 128_000 MAX_NEW_TOKENS = 1024 TEMPERATURE = 0.7 TOP_P = 0.85 TOP_K = 50 REPETITION_PENALTY = 1.05 if not torch.cuda.is_available(): DESCRIPTION += "\nThis demo does not work on CPU." model = AutoModelForCausalLM.from_pretrained( "ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct") tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[dict], temperature: float = TEMPERATURE, top_p: float = TOP_P, top_k: float = TOP_K, repetition_penalty: float = REPETITION_PENALTY, max_new_tokens: int = MAX_NEW_TOKENS, ) -> Iterator[str]: """Generate function for chat demo.""" # Build messages conversation = [] conversation.append({"role": "system", "content": SYS_PROMPT}) conversation += chat_history conversation.append({"role": "user", "content": message}) # Convert messages to prompt format input_ids = tokenizer.apply_chat_template( conversation, return_tensors="pt", add_generation_prompt=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens, ) input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) css_file_path = Path(Path(__file__).parent / "app.css") head_file_path = Path(Path(__file__).parent / "app_head.html") # advanced settings (displayed in Accordion) temperature_slider = gr.Slider( minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"] ) top_p_slider = gr.Slider( minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"] ) top_k_slider = gr.Slider( minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"] ) repetition_penalty_slider = gr.Slider( minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.1, label="Repetition Penalty", elem_classes=["gr_accordion_element"], ) max_new_tokens_slider = gr.Slider( minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"], ) chat_interface_accordion = gr.Accordion(label="Advanced Settings", open=False) with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo: gr.HTML( f"

{TITLE}

", elem_classes=["gr_title"], ) gr.HTML(DESCRIPTION) chat_interface = gr.ChatInterface( fn=generate, examples=[ ["Explain quantum computing"], ["What is OpenShift?"], ["Importance of low latency inference"], ["Write a binary search in Python"], ], cache_examples=False, type="messages", additional_inputs=[ temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider, ], additional_inputs_accordion=chat_interface_accordion, ) if __name__ == "__main__": demo.queue().launch()