"""Template Demo for IBM Granite Hugging Face spaces.""" from collections.abc import Iterator from datetime import datetime from pathlib import Path from threading import Thread import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from themes.research_monochrome import theme today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002 SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024. Today's Date: {today_date}. You are Granite, developed by IBM. You are a helpful AI assistant""" TITLE = "IBM Granite 3.1 8b Instruct" DESCRIPTION = """

Granite 3.1 8b instruct is an open-source LLM supporting a 128k context window. Start with one of the sample prompts or enter your own. Keep in mind that AI can occasionally make mistakes. View Documentation

""" MAX_INPUT_TOKEN_LENGTH = 128_000 MAX_NEW_TOKENS = 1024 TEMPERATURE = 0.7 TOP_P = 0.85 TOP_K = 50 REPETITION_PENALTY = 1.05 #model = AutoModelForCausalLM.from_pretrained( # "ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto" #) #tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct") #tokenizer.use_default_system_prompt = False def generate( message: str, chat_history: list[dict], temperature: float = TEMPERATURE, repetition_penalty: float = REPETITION_PENALTY, top_p: float = TOP_P, top_k: float = TOP_K, max_new_tokens: int = MAX_NEW_TOKENS, ) -> Iterator[str]: """Generate function for chat demo.""" # Build messages conversation = [] conversation.append({"role": "system", "content": SYS_PROMPT}) conversation += chat_history conversation.append({"role": "user", "content": message}) # Convert messages to prompt format input_ids = tokenizer.apply_chat_template( conversation, return_tensors="pt", add_generation_prompt=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens, ) input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) css_file_path = Path(Path(__file__).parent / "app.css") head_file_path = Path(Path(__file__).parent / "app_head.html") # advanced settings (displayed in Accordion) temperature_slider = gr.Slider( minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"] ) top_p_slider = gr.Slider( minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"] ) top_k_slider = gr.Slider( minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"] ) repetition_penalty_slider = gr.Slider( minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"], ) max_new_tokens_slider = gr.Slider( minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"], ) chat_interface_accordion = gr.Accordion(label="Advanced Settings", open=False) with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo: gr.HTML(f"

{TITLE}

", elem_classes=["gr_title"]) gr.HTML(DESCRIPTION) chat_interface = gr.ChatInterface( fn=generate, examples=[ ["Explain the concept of quantum computing to someone with no background in physics or computer science."], ["What is OpenShift?"], ["What's the importance of low latency inference?"], ["Help me boost productivity habits."], ], example_labels=[ "Explain quantum computing", "What is OpenShift?", "Importance of low latency inference", "Boosting productivity habits", ], cache_examples=False, type="messages", additional_inputs=[ temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider, ], additional_inputs_accordion=chat_interface_accordion, ) if __name__ == "__main__": demo.queue().launch()