Upload 2 files
Browse files- app.py +207 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from base64 import b64encode
|
3 |
+
|
4 |
+
import numpy
|
5 |
+
import torch
|
6 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, StableDiffusionPipeline
|
7 |
+
from huggingface_hub import notebook_login
|
8 |
+
|
9 |
+
# For video display:
|
10 |
+
from IPython.display import HTML
|
11 |
+
from matplotlib import pyplot as plt
|
12 |
+
from pathlib import Path
|
13 |
+
from PIL import Image
|
14 |
+
from torch import autocast
|
15 |
+
from torchvision import transforms as tfms
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
18 |
+
import os
|
19 |
+
|
20 |
+
torch.manual_seed(1)
|
21 |
+
if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
|
22 |
+
|
23 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
24 |
+
logging.set_verbosity_error()
|
25 |
+
|
26 |
+
# Set device
|
27 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
28 |
+
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
29 |
+
|
30 |
+
model_nm = "CompVis/stable-diffusion-v1-4"
|
31 |
+
|
32 |
+
output_dir="sd-concept-output"
|
33 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_nm).to(torch_device)
|
34 |
+
|
35 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
36 |
+
vae = pipe.vae
|
37 |
+
tokenizer = pipe.tokenizer
|
38 |
+
|
39 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
40 |
+
#tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16)
|
41 |
+
text_encoder =pipe.text_encoder
|
42 |
+
|
43 |
+
# The UNet model for generating the latents.
|
44 |
+
unet = pipe.unet
|
45 |
+
|
46 |
+
# The noise scheduler
|
47 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
48 |
+
|
49 |
+
# To the GPU we go!
|
50 |
+
vae = vae.to(torch_device)
|
51 |
+
text_encoder = text_encoder.to(torch_device)
|
52 |
+
unet = unet.to(torch_device);
|
53 |
+
|
54 |
+
pipe.load_textual_inversion("sd-concepts-library/madhubani-art")
|
55 |
+
pipe.load_textual_inversion("sd-concepts-library/line-art")
|
56 |
+
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
|
57 |
+
pipe.load_textual_inversion("sd-concepts-library/concept-art")
|
58 |
+
|
59 |
+
def pil_to_latent(input_im):
|
60 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
61 |
+
with torch.no_grad():
|
62 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
63 |
+
return 0.18215 * latent.latent_dist.sample()
|
64 |
+
|
65 |
+
def latents_to_pil(latents):
|
66 |
+
# bath of latents -> list of images
|
67 |
+
latents = (1 / 0.18215) * latents
|
68 |
+
with torch.no_grad():
|
69 |
+
image = vae.decode(latents).sample
|
70 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
71 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
72 |
+
images = (image * 255).round().astype("uint8")
|
73 |
+
pil_images = [Image.fromarray(image) for image in images]
|
74 |
+
return pil_images
|
75 |
+
|
76 |
+
# Prep Scheduler
|
77 |
+
def set_timesteps(scheduler, num_inference_steps):
|
78 |
+
scheduler.set_timesteps(num_inference_steps)
|
79 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers
|
80 |
+
|
81 |
+
def saturation_loss(images):
|
82 |
+
# Calculate saturation for each pixel in the input image tensor
|
83 |
+
max_vals, _ = torch.max(images, dim=1, keepdim=True)
|
84 |
+
min_vals, _ = torch.min(images, dim=1, keepdim=True)
|
85 |
+
saturation = (max_vals - min_vals) / max_vals.clamp(min=1e-7) # Avoid division by zero
|
86 |
+
|
87 |
+
# Calculate mean saturation across the image
|
88 |
+
mean_saturation = torch.mean(saturation, dim=(2, 3)) # Average over width and height
|
89 |
+
|
90 |
+
# Calculate the loss as the negative mean saturation (proportional to saturation)
|
91 |
+
#loss = torch.abs(saturation - 0.9).mean()
|
92 |
+
|
93 |
+
return mean_saturation/10000
|
94 |
+
|
95 |
+
def generateImage(prompt, lossScale):
|
96 |
+
#prompt = 'a puppy in <cat-toy> style' #@param
|
97 |
+
height = 512 # default height of Stable Diffusion
|
98 |
+
width = 512 # default width of Stable Diffusion
|
99 |
+
num_inference_steps = 200 #@param # Number of denoising steps
|
100 |
+
guidance_scale = 8 #@param # Scale for classifier-free guidance
|
101 |
+
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
|
102 |
+
batch_size = 1
|
103 |
+
saturation_loss_Scale = lossScale #@param
|
104 |
+
|
105 |
+
# Prep text
|
106 |
+
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
107 |
+
with torch.no_grad():
|
108 |
+
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
109 |
+
|
110 |
+
# And the uncond. input as before:
|
111 |
+
max_length = text_input.input_ids.shape[-1]
|
112 |
+
uncond_input = tokenizer(
|
113 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
114 |
+
)
|
115 |
+
with torch.no_grad():
|
116 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
117 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
118 |
+
|
119 |
+
# Prep Scheduler
|
120 |
+
set_timesteps(scheduler, num_inference_steps)
|
121 |
+
|
122 |
+
# Prep latents
|
123 |
+
latents = torch.randn(
|
124 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
125 |
+
generator=generator,
|
126 |
+
)
|
127 |
+
latents = latents.to(torch_device)
|
128 |
+
latents = latents * scheduler.init_noise_sigma
|
129 |
+
|
130 |
+
# Loop
|
131 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
132 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
133 |
+
latent_model_input = torch.cat([latents] * 2)
|
134 |
+
sigma = scheduler.sigmas[i]
|
135 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
136 |
+
|
137 |
+
# predict the noise residual
|
138 |
+
with torch.no_grad():
|
139 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
140 |
+
|
141 |
+
# perform CFG
|
142 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
143 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
144 |
+
|
145 |
+
#### ADDITIONAL GUIDANCE ###
|
146 |
+
if i%5 == 0:
|
147 |
+
# Requires grad on the latents
|
148 |
+
latents = latents.detach().requires_grad_()
|
149 |
+
|
150 |
+
# Get the predicted x0:
|
151 |
+
# latents_x0 = latents - sigma * noise_pred
|
152 |
+
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
153 |
+
scheduler._step_index = scheduler._step_index - 1
|
154 |
+
|
155 |
+
# Decode to image space
|
156 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
157 |
+
|
158 |
+
# Calculate loss
|
159 |
+
loss = saturation_loss(denoised_images) * saturation_loss_Scale
|
160 |
+
#loss = loss.detach().requires_grad_()
|
161 |
+
#print('loss.grad_fn = {}'.format(grad_fn))
|
162 |
+
|
163 |
+
# Occasionally print it out
|
164 |
+
if i%10==0:
|
165 |
+
print(i, 'loss:', loss.item())
|
166 |
+
|
167 |
+
# Get gradient
|
168 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
169 |
+
|
170 |
+
# Modify the latents based on this gradient
|
171 |
+
latents = latents.detach() - cond_grad * sigma**2
|
172 |
+
|
173 |
+
# Now step with scheduler
|
174 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
175 |
+
|
176 |
+
|
177 |
+
custom_loss_image = latents_to_pil(latents)[0]
|
178 |
+
return custom_loss_image
|
179 |
+
|
180 |
+
def inference(imgText, style, customLoss="no"):
|
181 |
+
prompt = f'a {imgText} in <{style}> style'
|
182 |
+
if (customLoss == "yes") :
|
183 |
+
outImage = generateImage(prompt, 2)
|
184 |
+
return outImage
|
185 |
+
else:
|
186 |
+
outImage = generateImage(prompt, 0)
|
187 |
+
return outImage
|
188 |
+
|
189 |
+
|
190 |
+
title = "TSAI S20 Assignment: Use a pretrained Sstable Diffusion model and give a demo on its workig"
|
191 |
+
description = "A simple Gradio interface that accepts a text and style, and generated an image using stable diffusion pipeline"
|
192 |
+
|
193 |
+
examples = [["puppy","cat-toy","yes"]]
|
194 |
+
|
195 |
+
demo = gr.Interface(
|
196 |
+
inference,
|
197 |
+
inputs = [gr.Textbox("Enter an image you want to generate"),
|
198 |
+
gr.Dropdown(["madhubani-art", "line-art", "cat-toy","concept-art"], label="Choose your style"),
|
199 |
+
gr.Radio(["yes", "no"], label="Add custom saturation loss?")
|
200 |
+
],
|
201 |
+
outputs = [gr.Image(shape=(512, 512), label="Generated Image")],
|
202 |
+
title = title,
|
203 |
+
description = description,
|
204 |
+
examples = examples,
|
205 |
+
)
|
206 |
+
demo.launch()
|
207 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|