Spaces:
Runtime error
Runtime error
File size: 1,821 Bytes
f3d0f1e 58be4d5 f3d0f1e 58be4d5 f3d0f1e 58be4d5 f3d0f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"# Create vectorstore\n",
"import pandas as pd\n",
"from vectordatabase import load_documents\n",
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"\n",
"\n",
"df = pd.read_pickle(\"C:\\\\Users\\Tom\\SynologyDrive\\Tom\\Programming\\\\NLP\\Spaces\\PoliticsToYou\\src\\Speeches\\speeches_1949_09_12\")\n",
"# Split speeches into documents\n",
"documents = load_documents(df)\n",
"embeddings = HuggingFaceEmbeddings(model_name=\"paraphrase-multilingual-MiniLM-L12-v2\")\n",
"db = FAISS.from_documents(documents, embeddings)\n",
"db.save_local(folder_path=\"ChatBot\\FAISS\", index_name=\"speeches_1949_09_12\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|