Spaces:
Runtime error
Runtime error
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.llms.huggingface_hub import HuggingFaceHub | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from src.vectordatabase import RAG, get_vectorstore | |
import pandas as pd | |
import os | |
#from dotenv import load_dotenv, find_dotenv | |
#Load environmental variables from .env-file | |
#load_dotenv(find_dotenv()) | |
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2") | |
llm = HuggingFaceHub( | |
# Try different model here | |
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
# repo_id="CohereForAI/c4ai-command-r-v01", # too large 69gb | |
# repo_id="CohereForAI/c4ai-command-r-v01-4bit", # too large 22 gb | |
# repo_id="meta-llama/Meta-Llama-3-8B", # too large 16 gb | |
task="text-generation", | |
model_kwargs={ | |
"max_new_tokens": 512, | |
"top_k": 30, | |
"temperature": 0.1, | |
"repetition_penalty": 1.03, | |
} | |
#,huggingfacehub_api_token | |
) | |
# To Do: Experiment with different templates replying in german or english depending on the input language | |
prompt1 = ChatPromptTemplate.from_template("""<s>[INST] | |
Instruction: Beantworte die folgende Frage auf deutsch und nur auf der Grundlage des angegebenen Kontexts: | |
Context: {context} | |
Question: {input} | |
[/INST]""" | |
# Returns the answer in English!? | |
) | |
prompt2 = ChatPromptTemplate.from_template("""Beantworte die folgende Frage auf deutsch und nur auf der Grundlage des angegebenen Kontexts: | |
<context> | |
{context} | |
</context> | |
Frage: {input} | |
""" | |
# Returns the answer in German | |
) | |
folder_path = "./src/FAISS" | |
#index_name = "speeches_1949_09_12" | |
index_name = "legislature20" | |
db = get_vectorstore(embeddings=embeddings, folder_path=folder_path, index_name=index_name) | |
def chatbot(message, history, db=db, llm=llm, prompt=prompt2): | |
raw_response = RAG(llm=llm, prompt=prompt, db=db, question=message) | |
response = raw_response['answer'].split("Antwort: ")[1] | |
return response | |
# Retrieve speech contents based on keywords | |
def keyword_search(query, db=db, embeddings=embeddings): | |
query_embedding = embeddings.embed_query(query) | |
results = db.max_marginal_relevance_search_with_score_by_vector(query_embedding) | |
# Format vector store query results into dataframe | |
#print(results[0][0].metadata.keys()) | |
df_res = pd.DataFrame(columns=['Speech Content', 'Relevance']) # Add Date/Party/Politician | |
for doc in results: | |
speech_content = doc[0].page_content | |
#speech_date = doc[0].metadata["date"] | |
score = doc[1] # Relevance based on relevance search | |
df_res = pd.concat([df_res, pd.DataFrame({'Speech Content': [speech_content], | |
#'Date': [speech_date], | |
'Relevance': [score]})], ignore_index=True) | |
df_res.sort_values('Relevance', inplace=True) | |
return df_res |