Spaces:
Sleeping
Sleeping
from langchain_community.document_loaders import DataFrameLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.llms import HuggingFaceHub | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain.chains import create_retrieval_chain | |
from faiss import IndexFlatL2 | |
from langchain_community.docstore.in_memory import InMemoryDocstore | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
import functools | |
import pandas as pd | |
import os | |
#from dotenv import load_dotenv | |
#Load environmental variables from .env-file | |
#load_dotenv() | |
# Load documents to create a vectorstore later | |
def load_documents(df): | |
# To Do: Create one initial vectore store loading all the documents with this function | |
#loader = CSVLoader(index_name, source_column="speech_content") #unprocessed csv file | |
loader = DataFrameLoader(data_frame=df, page_content_column='speech_content') #df | |
data = loader.load() | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1024, | |
chunk_overlap=32, | |
length_function=len, | |
is_separator_regex=False, | |
) | |
documents = splitter.split_documents(documents=data) | |
return documents | |
#@functools.lru_cache() | |
def get_vectorstore(inputs, embeddings): | |
""" | |
Combine multiple FAISS vector stores into a single vector store based on the specified inputs. | |
Parameters: | |
---------- | |
inputs : list of str | |
A list of strings specifying which vector stores to combine. Each string represents a specific | |
index or a special keyword "All". If "All" is included in the list, it will load a pre-defined | |
comprehensive vector store and return immediately. | |
embeddings : Embeddings | |
An instance of embeddings that will be used to load the vector stores. The specific type and | |
structure of `embeddings` depend on the implementation of the `get_vectorstore` function. | |
Returns: | |
------- | |
FAISS | |
A FAISS vector store that combines the specified indices into a single vector store. | |
Notes: | |
----- | |
- The `folder_path` variable is set to the default path "./src/FAISS", where the FAISS index files are stored. | |
- The function initializes an empty FAISS vector store with a dimensionality of 128. | |
- If "All" is specified in the `inputs`, it directly loads and returns the comprehensive vector store named "speeches_1949_09_12". | |
- For each specific index in `inputs`, it retrieves the corresponding vector store and merges it with the initialized FAISS vector store. | |
- The `FAISS.load_local` method is used to load vector stores from the local file system. | |
The `allow_dangerous_deserialization` parameter is set to True to allow loading of potentially unsafe serialized objects. | |
""" | |
# Default folder path | |
folder_path = "./src/FAISS" | |
if inputs[0] == "All": | |
index_name = "speeches_1949_09_12" | |
db = FAISS.load_local(folder_path=folder_path, index_name=index_name, | |
embeddings=embeddings, allow_dangerous_deserialization=True) | |
return db | |
# Initialize empty db | |
embedding_function = embeddings #SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
dimensions: int = len(embedding_function.embed_query("dummy")) | |
db = FAISS( | |
embedding_function=embedding_function, | |
index=IndexFlatL2(dimensions), | |
docstore=InMemoryDocstore(), | |
index_to_docstore_id={}, | |
normalize_L2=False | |
) | |
# Retrieve inputs: 20. Legislaturperiode, 19. Legislaturperiode, ... | |
for input in inputs: | |
# Retrieve selected index and merge vector stores | |
index = input.split(".")[0] | |
index_name = f'{index}_legislature' | |
local_db = FAISS.load_local(folder_path=folder_path, index_name=index_name, | |
embeddings=embeddings, allow_dangerous_deserialization=True) | |
db.merge_from(local_db) | |
return db | |
# Apply RAG by providing the context and the question to the LLM using the predefined template | |
def RAG(llm, prompt, db, question): | |
document_chain = create_stuff_documents_chain(llm=llm, prompt=prompt) | |
retriever = db.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
response = retrieval_chain.invoke({"input": question}) | |
return response | |
######### | |
# Dynamically loading vector_db | |
########## | |
def get_similar_vectorstore(start_date, end_date, party, base_path='src\FAISS'): | |
# Get all file names | |
vector_stores = [store for store in os.listdir(base_path) if store.split(".")[1] == "faiss"] | |
df = pd.DataFrame(culumns=["file_name", "start_date", "end_date", "date_diff"]) | |
# Extract metadata of file from its name | |
for file_name in vector_stores: | |
file_name = file_name.split(".")[0] | |
file_elements = file_name.split("_") | |
file_start_date, file_end_date, file_party = file_elements[1], file_elements[2], file_elements[3] | |
if file_party == party and file_start_date <= start_date: | |
None | |