PoliticsToYou / src /chatbot.py
TomData's picture
bug fix db_input
c98215f
raw
history blame
6.18 kB
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain_community.embeddings import HuggingFaceEmbeddings
from src.vectordatabase import RAG, get_vectorstore
import pandas as pd
from dotenv import load_dotenv, find_dotenv
#Load environmental variables from .env-file
#load_dotenv(find_dotenv())
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2")
llm = HuggingFaceHub(
# Try different model here
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
# repo_id="CohereForAI/c4ai-command-r-v01", # too large 69gb
# repo_id="CohereForAI/c4ai-command-r-v01-4bit", # too large 22 gb
# repo_id="meta-llama/Meta-Llama-3-8B", # too large 16 gb
task="text-generation",
model_kwargs={
"max_new_tokens": 512,
"top_k": 30,
"temperature": 0.1,
"repetition_penalty": 1.03,
}
#,huggingfacehub_api_token
)
# To Do: Experiment with different templates
prompt_test = ChatPromptTemplate.from_template("""<s>[INST]
Instruction: Beantworte die folgende Frage auf deutsch und nur auf der Grundlage des angegebenen Kontexts:
Context: {context}
Question: {input}
[/INST]"""
)
prompt_de = ChatPromptTemplate.from_template("""Beantworte die folgende Frage auf deutsch und nur auf der Grundlage des angegebenen Kontexts:
<context>
{context}
</context>
Frage: {input}
"""
# Returns the answer in German
)
prompt_en = ChatPromptTemplate.from_template("""Beantworte die folgende Frage auf deutsch und nur auf der Grundlage des angegebenen Kontexts:
<context>
{context}
</context>
Frage: {input}
"""
# Returns the answer in German
)
#folder_path =
#index_name = "speeches_1949_09_12"
#index_name = "legislature20"
#db = get
def chatbot(message, history, db_inputs, llm=llm, prompt=prompt_de):
db = get_vectorstore(inputs = db_inputs, embeddings=embeddings)
raw_response = RAG(llm=llm, prompt=prompt, db=db, question=message)
# Only necessary because mistral does include it´s json structure in the output
try:
response = raw_response['answer'].split("Antwort: ")[1]
except:
response = raw_response['answer']
return response
def keyword_search(db, query, n=10, embeddings=embeddings, method='ss', party_filter='All'):
"""
Retrieve speech contents based on keywords using a specified method.
Parameters:
----------
db : FAISS
The FAISS vector store containing speech embeddings.
query : str
The keyword(s) to search for in the speech contents.
n : int, optional
The number of speech contents to retrieve (default is 10).
embeddings : Embeddings, optional
An instance of embeddings used for embedding queries (default is embeddings).
method : str, optional
The method used for retrieving speech contents. Options are 'ss' (semantic search) and 'mmr'
(maximal marginal relevance) (default is 'ss').
party_filter : str, optional
A filter for retrieving speech contents by party affiliation. Specify 'All' to retrieve
speeches from all parties (default is 'All').
Returns:
-------
pandas.DataFrame
A DataFrame containing the speech contents, dates, and party affiliations.
Notes:
-----
- The `db` parameter should be a FAISS vector store containing speech embeddings.
- The `query` parameter specifies the keyword(s) to search for in the speech contents.
- The `n` parameter determines the number of speech contents to retrieve (default is 10).
- The `embeddings` parameter is an instance of embeddings used for embedding queries (default is embeddings).
- The `method` parameter specifies the method used for retrieving speech contents. Options are 'ss' (semantic search)
and 'mmr' (maximal marginal relevance) (default is 'ss').
- The `party_filter` parameter is a filter for retrieving speech contents by party affiliation. Specify 'All' to retrieve
speeches from all parties (default is 'All').
"""
query_embedding = embeddings.embed_query(query)
# Maximal Marginal Relevance
if method == 'mmr':
df_res = pd.DataFrame(columns=['Speech Content', 'Date', 'Party', 'Relevance'])
results = db.max_marginal_relevance_search_with_score_by_vector(query_embedding, k=n)
for doc in results:
party = doc[0].metadata["party"]
if party != party_filter and party_filter != 'All':
continue
speech_content = doc[0].page_content
speech_date = doc[0].metadata["date"]
score = round(doc[1], ndigits=2)
df_res = pd.concat([df_res, pd.DataFrame({'Speech Content': [speech_content],
'Date': [speech_date],
'Party': [party],
'Relevance': [score]})], ignore_index=True)
df_res.sort_values('Relevance', inplace=True, ascending=True)
# Similarity Search
else:
df_res = pd.DataFrame(columns=['Speech Content', 'Date', 'Party'])
results = db.similarity_search_by_vector(query_embedding, k=n)
for doc in results:
party = doc.metadata["party"]
if party != party_filter and party_filter != 'All':
continue
speech_content = doc.page_content
speech_date = doc.metadata["date"]
df_res = pd.concat([df_res, pd.DataFrame({'Speech Content': [speech_content],
'Date': [speech_date],
'Party': [party]})], ignore_index=True)
return df_res