Spaces:
Sleeping
Sleeping
load db_all before inference
Browse files- Home.py +13 -2
- src/vectordatabase.py +59 -9
Home.py
CHANGED
@@ -58,8 +58,9 @@ with gr.Blocks() as App:
|
|
58 |
with gr.Row() as additional_input:
|
59 |
n_slider = gr.Slider(label="Number of Results", minimum=1, maximum=100, step=1, value=10)
|
60 |
party_dopdown = gr.Dropdown(value='All', choices=['All','CDU/CSU','SPD','FDP','Grüne','not found','DIE LINKE.','PDS','KPD'], label='Party') # change choices to all possible options
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
search_btn = gr.Button('Search')
|
65 |
|
@@ -106,6 +107,16 @@ with gr.Blocks() as App:
|
|
106 |
inputs=[results_df, keyword_box, ftype_dropdown],
|
107 |
outputs=[file],
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
|
111 |
if __name__ == "__main__":
|
|
|
58 |
with gr.Row() as additional_input:
|
59 |
n_slider = gr.Slider(label="Number of Results", minimum=1, maximum=100, step=1, value=10)
|
60 |
party_dopdown = gr.Dropdown(value='All', choices=['All','CDU/CSU','SPD','FDP','Grüne','not found','DIE LINKE.','PDS','KPD'], label='Party') # change choices to all possible options
|
61 |
+
# ToDo: Add date or legislature filter as input
|
62 |
+
#start_date = Calendar(value="1949-01-01", type="datetime", label="Select start date", info="Click the calendar icon to bring up the calendar.", interactive=True)
|
63 |
+
#end_date = Calendar(value=datetime.today().strftime('%Y-%m-%d'), type="datetime", label="Select end date", info="Click the calendar icon to bring up the calendar.", interactive=True)
|
64 |
|
65 |
search_btn = gr.Button('Search')
|
66 |
|
|
|
107 |
inputs=[results_df, keyword_box, ftype_dropdown],
|
108 |
outputs=[file],
|
109 |
)
|
110 |
+
|
111 |
+
with gr.Tab("About"):
|
112 |
+
gr.Markdown(text="""**Motivation:**
|
113 |
+
The idea of this project is a combination of my curiosity in LLM application and my affection for speech data, that I developed during my bachelor thesis on measuring populism in text data.
|
114 |
+
I would like to allow people to discover interesting discussions, opinions and positions that were communicated in the german parliament thoughout the years.
|
115 |
+
**Development status:**
|
116 |
+
Chatbot: Users can interact with the chatbot asking questions about anything that can be answered by speeches. Furthermore they can select any legislature as a basis for the chatbot's reply.
|
117 |
+
Keyword
|
118 |
+
|
119 |
+
""")
|
120 |
|
121 |
|
122 |
if __name__ == "__main__":
|
src/vectordatabase.py
CHANGED
@@ -18,19 +18,42 @@ import os
|
|
18 |
# from dotenv import load_dotenv
|
19 |
# load_dotenv()
|
20 |
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
# Load documents to create a vectorstore later
|
23 |
def load_documents(df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
|
|
26 |
data = loader.load()
|
|
|
|
|
27 |
splitter = RecursiveCharacterTextSplitter(
|
28 |
chunk_size=1024,
|
29 |
chunk_overlap=32,
|
30 |
length_function=len,
|
31 |
is_separator_regex=False,
|
32 |
)
|
|
|
|
|
33 |
documents = splitter.split_documents(documents=data)
|
|
|
34 |
return documents
|
35 |
|
36 |
|
@@ -69,10 +92,10 @@ def get_vectorstore(inputs, embeddings):
|
|
69 |
folder_path = "./src/FAISS"
|
70 |
|
71 |
if inputs[0] == "All":
|
72 |
-
index_name = "speeches_1949_09_12"
|
73 |
-
db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
74 |
-
|
75 |
-
return
|
76 |
|
77 |
|
78 |
# Initialize empty db
|
@@ -99,15 +122,42 @@ def get_vectorstore(inputs, embeddings):
|
|
99 |
|
100 |
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
document_chain = create_stuff_documents_chain(llm=llm, prompt=prompt)
|
|
|
105 |
retriever = db.as_retriever()
|
|
|
106 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
107 |
-
|
108 |
response = retrieval_chain.invoke({"input": question})
|
|
|
109 |
return response
|
110 |
|
|
|
111 |
#########
|
112 |
# Dynamically loading vector_db
|
113 |
##########
|
|
|
18 |
# from dotenv import load_dotenv
|
19 |
# load_dotenv()
|
20 |
|
21 |
+
# Global variables
|
22 |
+
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2")
|
23 |
+
db_all = FAISS.load_local(folder_path="./src/FAISS", index_name="speeches_1949_09_12",
|
24 |
+
embeddings=embeddings, allow_dangerous_deserialization=True)
|
25 |
|
|
|
26 |
def load_documents(df):
|
27 |
+
"""
|
28 |
+
Load documents from a DataFrame and split them into smaller chunks for vector storage.
|
29 |
+
|
30 |
+
Parameters:
|
31 |
+
----------
|
32 |
+
df : pandas.DataFrame
|
33 |
+
A DataFrame containing the documents to be processed, with a column named 'speech_content' that holds the text content.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
-------
|
37 |
+
list
|
38 |
+
A list of split document chunks ready for further processing or vectorization.
|
39 |
+
"""
|
40 |
|
41 |
+
# Initialize a DataFrameLoader with the given DataFrame and specify the column containing the content to load
|
42 |
+
loader = DataFrameLoader(data_frame=df, page_content_column='speech_content')
|
43 |
+
# Load the data from the DataFrame into a suitable format for processing
|
44 |
data = loader.load()
|
45 |
+
|
46 |
+
# Initialize a RecursiveCharacterTextSplitter to split the text into chunks
|
47 |
splitter = RecursiveCharacterTextSplitter(
|
48 |
chunk_size=1024,
|
49 |
chunk_overlap=32,
|
50 |
length_function=len,
|
51 |
is_separator_regex=False,
|
52 |
)
|
53 |
+
|
54 |
+
# Split the loaded data into smaller chunks using the splitter
|
55 |
documents = splitter.split_documents(documents=data)
|
56 |
+
|
57 |
return documents
|
58 |
|
59 |
|
|
|
92 |
folder_path = "./src/FAISS"
|
93 |
|
94 |
if inputs[0] == "All":
|
95 |
+
# index_name = "speeches_1949_09_12"
|
96 |
+
# db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
97 |
+
# embeddings=embeddings, allow_dangerous_deserialization=True)
|
98 |
+
return db_all
|
99 |
|
100 |
|
101 |
# Initialize empty db
|
|
|
122 |
|
123 |
|
124 |
|
125 |
+
def RAG(llm, prompt, db, question):
|
126 |
+
"""
|
127 |
+
Apply Retrieval-Augmented Generation (RAG) by providing the context and the question to the
|
128 |
+
language model using a predefined template.
|
129 |
+
|
130 |
+
Parameters:
|
131 |
+
----------
|
132 |
+
llm : LanguageModel
|
133 |
+
An instance of the language model to be used for generating responses.
|
134 |
+
|
135 |
+
prompt : str
|
136 |
+
A predefined template or prompt that structures how the context and question are presented to the language model.
|
137 |
+
|
138 |
+
db : VectorStore
|
139 |
+
A vector store instance that supports retrieval of relevant documents based on the input question.
|
140 |
+
|
141 |
+
question : str
|
142 |
+
The question or query to be answered by the language model.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
-------
|
146 |
+
str
|
147 |
+
The response generated by the language model, based on the retrieved context and provided question.
|
148 |
+
"""
|
149 |
+
# Create a document chain using the provided language model and prompt template
|
150 |
document_chain = create_stuff_documents_chain(llm=llm, prompt=prompt)
|
151 |
+
# Convert the vector store into a retriever
|
152 |
retriever = db.as_retriever()
|
153 |
+
# Create a retrieval chain that integrates the retriever with the document chain
|
154 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
155 |
+
# Invoke the retrieval chain with the input question to get the final response
|
156 |
response = retrieval_chain.invoke({"input": question})
|
157 |
+
|
158 |
return response
|
159 |
|
160 |
+
|
161 |
#########
|
162 |
# Dynamically loading vector_db
|
163 |
##########
|