import gradio as gr from huggingface_hub import snapshot_download import numpy as np from scipy.io import wavfile model_ids = [ 'suno/bark', ] for model_id in model_ids: model_name = model_id.split('/')[-1] snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') from TTS.tts.configs.bark_config import BarkConfig from TTS.tts.models.bark import Bark config = BarkConfig() model = Bark.init_from_config(config) model.load_checkpoint(config, checkpoint_dir="checkpoints/bark", eval=True) def infer(prompt): text = "Hello, my name is Manmay , how are you?" # with random speaker #output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None) # cloning a speaker. # It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz` output_dict = model.synthesize(text, config, speaker_id="speaker", voice_dirs="bark_voices/") print(output_dict) sample_rate = 44100 # Replace with the actual sample rate wavfile.write('output.wav', sample_rate, output_dict['wav']) return "output.wav" gr.Interface(fn=infer, inputs=[gr.Textbox()], outputs=[gr.Audio()]).launch()