Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,617 Bytes
266a885 77cc5e6 266a885 db6cbf2 266a885 db6cbf2 77cc5e6 266a885 c1b6b5f 266a885 c1b6b5f 266a885 402a6d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import spaces
import logging
import os
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from tempfile import NamedTemporaryFile
import time
import typing as tp
import subprocess as sp
import torch
import gradio as gr
from audiocraft.data.audio_utils import f32_pcm, normalize_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import JASCO
import os
from huggingface_hub import login
hf_token = os.environ.get('HFTOKEN')
if hf_token:
login(token=hf_token)
MODEL = None
MAX_BATCH_SIZE = 12
INTERRUPTING = False
# Wrap subprocess call to clean logs
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocate process pool
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def chords_string_to_list(chords: str):
if chords == '':
return []
chords = chords.replace('[', '').replace(']', '').replace(' ', '')
chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
return [(x[0], float(x[1])) for x in chrd_times]
# Create necessary directories
os.makedirs("models", exist_ok=True)
@spaces.GPU
def load_model(version='facebook/jasco-chords-drums-400M'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = None
try:
MODEL = JASCO.get_pretrained(version, device='cuda')
MODEL.name = version
except Exception as e:
raise gr.Error(f"Error loading model: {str(e)}")
if MODEL is None:
raise gr.Error("Failed to load model")
return MODEL
@spaces.GPU
def _do_predictions(texts, chords, melody_matrix, drum_prompt, progress=False, gradio_progress=None, **gen_kwargs):
MODEL.set_generation_params(**gen_kwargs)
be = time.time()
chords = chords_string_to_list(chords)
if melody_matrix is not None:
melody_matrix = torch.load(melody_matrix.name, weights_only=True)
if len(melody_matrix.shape) != 2:
raise gr.Error(f"Melody matrix should be a torch tensor of shape [n_melody_bins, T]; got: {melody_matrix.shape}")
if melody_matrix.shape[0] > melody_matrix.shape[1]:
melody_matrix = melody_matrix.permute(1, 0)
if drum_prompt is None:
preprocessed_drums_wav = None
drums_sr = 32000
else:
drums_sr, drums = drum_prompt[0], f32_pcm(torch.from_numpy(drum_prompt[1])).t()
if drums.dim() == 1:
drums = drums[None]
drums = normalize_audio(drums, strategy="loudness", loudness_headroom_db=16, sample_rate=drums_sr)
preprocessed_drums_wav = drums
try:
outputs = MODEL.generate_music(descriptions=texts, chords=chords,
drums_wav=preprocessed_drums_wav,
melody_salience_matrix=melody_matrix,
drums_sample_rate=drums_sr, progress=progress)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_wavs.append(file.name)
file_cleaner.add(file.name)
return out_wavs
@spaces.GPU
def predict_full(model, text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt,
ode_rtol, ode_atol,
ode_solver, ode_steps,
progress=gr.Progress()):
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
drums = drums_mic if drum_input_src == "mic" else drums_file
wavs = _do_predictions(
texts=[text] * 2,
chords=chords_sym,
drum_prompt=drums,
melody_matrix=melody_file,
progress=True,
gradio_progress=progress,
cfg_coef_all=cfg_coef_all,
cfg_coef_txt=cfg_coef_txt,
ode_rtol=ode_rtol,
ode_atol=ode_atol,
euler=ode_solver == 'euler',
euler_steps=ode_steps)
return wavs
with gr.Blocks() as demo:
gr.Markdown("""
# JASCO - Text-to-Music Generation with Temporal Control
Generate 10-second music clips using text descriptions and temporal controls (chords, drums, melody).
""")
with gr.Row():
with gr.Column():
submit = gr.Button("Generate")
interrupt_btn = gr.Button("Interrupt")
with gr.Column():
audio_output_0 = gr.Audio(label="Generated Audio 1", type='filepath')
audio_output_1 = gr.Audio(label="Generated Audio 2", type='filepath')
with gr.Row():
with gr.Column():
text = gr.Text(label="Input Text",
value="Strings, woodwind, orchestral, symphony.",
interactive=True)
with gr.Column():
model = gr.Radio([
'facebook/jasco-chords-drums-400M',
'facebook/jasco-chords-drums-1B',
'facebook/jasco-chords-drums-melody-400M',
'facebook/jasco-chords-drums-melody-1B'
], label="Model", value='facebook/jasco-chords-drums-melody-400M')
gr.Markdown("### Chords Conditions")
chords_sym = gr.Text(
label="Chord Progression",
value="(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
interactive=True
)
gr.Markdown("### Drums Conditions")
with gr.Row():
drum_input_src = gr.Radio(["file", "mic"], value="file", label="Drums Input Source")
drums_file = gr.Audio(sources=["upload"], type="numpy", label="Drums File")
drums_mic = gr.Audio(sources=["microphone"], type="numpy", label="Drums Mic")
gr.Markdown("### Melody Conditions")
melody_file = gr.File(label="Melody File")
with gr.Row():
cfg_coef_all = gr.Number(label="CFG ALL", value=1.25, step=0.25)
cfg_coef_txt = gr.Number(label="CFG TEXT", value=2.5, step=0.25)
ode_tol = gr.Number(label="ODE Tolerance", value=1e-4, step=1e-5)
ode_solver = gr.Radio(['euler', 'dopri5'], label="ODE Solver", value='euler')
ode_steps = gr.Number(label="Euler Steps", value=10, step=1)
submit.click(
fn=predict_full,
inputs=[
model, text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt,
ode_tol, ode_tol, ode_solver, ode_steps
],
outputs=[audio_output_0, audio_output_1]
)
interrupt_btn.click(fn=interrupt, queue=False)
gr.Examples(
examples=[
[
"80s pop with groovy synth bass and electric piano",
"(N, 0.0), (C, 0.32), (Dm7, 3.456), (Am, 4.608), (F, 8.32), (C, 9.216)",
None,
None,
],
[
"Strings, woodwind, orchestral, symphony.",
"(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
None,
None,
],
],
inputs=[text, chords_sym, melody_file, drums_file],
outputs=[audio_output_0, audio_output_1]
)
demo.queue().launch(ssr_mode=False) |