File size: 8,617 Bytes
266a885
 
 
 
 
 
 
 
 
 
 
 
 
 
77cc5e6
 
266a885
db6cbf2
 
 
 
266a885
 
 
 
db6cbf2
77cc5e6
266a885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b6b5f
 
 
 
266a885
 
 
 
 
c1b6b5f
 
 
 
 
 
 
 
 
266a885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402a6d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import spaces
import logging
import os
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from tempfile import NamedTemporaryFile
import time
import typing as tp
import subprocess as sp
import torch
import gradio as gr
from audiocraft.data.audio_utils import f32_pcm, normalize_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import JASCO
import os
from huggingface_hub import login

hf_token = os.environ.get('HFTOKEN')
if hf_token:
    login(token=hf_token)

MODEL = None
MAX_BATCH_SIZE = 12
INTERRUPTING = False



# Wrap subprocess call to clean logs
_old_call = sp.call

def _call_nostderr(*args, **kwargs):
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)

sp.call = _call_nostderr

# Preallocate process pool
pool = ProcessPoolExecutor(4)
pool.__enter__()

def interrupt():
    global INTERRUPTING
    INTERRUPTING = True

class FileCleaner:
    def __init__(self, file_lifetime: float = 3600):
        self.file_lifetime = file_lifetime
        self.files = []

    def add(self, path: tp.Union[str, Path]):
        self._cleanup()
        self.files.append((time.time(), Path(path)))

    def _cleanup(self):
        now = time.time()
        for time_added, path in list(self.files):
            if now - time_added > self.file_lifetime:
                if path.exists():
                    path.unlink()
                self.files.pop(0)
            else:
                break

file_cleaner = FileCleaner()

def chords_string_to_list(chords: str):
    if chords == '':
        return []
    chords = chords.replace('[', '').replace(']', '').replace(' ', '')
    chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
    return [(x[0], float(x[1])) for x in chrd_times]

# Create necessary directories
os.makedirs("models", exist_ok=True)

@spaces.GPU
def load_model(version='facebook/jasco-chords-drums-400M'):
    global MODEL
    print("Loading model", version)
    if MODEL is None or MODEL.name != version:
        MODEL = None
        try:
            MODEL = JASCO.get_pretrained(version, device='cuda')
            MODEL.name = version
        except Exception as e:
            raise gr.Error(f"Error loading model: {str(e)}")
        
        if MODEL is None:
            raise gr.Error("Failed to load model")
    return MODEL

@spaces.GPU
def _do_predictions(texts, chords, melody_matrix, drum_prompt, progress=False, gradio_progress=None, **gen_kwargs):
    MODEL.set_generation_params(**gen_kwargs)
    be = time.time()

    chords = chords_string_to_list(chords)

    if melody_matrix is not None:
        melody_matrix = torch.load(melody_matrix.name, weights_only=True)
        if len(melody_matrix.shape) != 2:
            raise gr.Error(f"Melody matrix should be a torch tensor of shape [n_melody_bins, T]; got: {melody_matrix.shape}")
        if melody_matrix.shape[0] > melody_matrix.shape[1]:
            melody_matrix = melody_matrix.permute(1, 0)

    if drum_prompt is None:
        preprocessed_drums_wav = None
        drums_sr = 32000
    else:
        drums_sr, drums = drum_prompt[0], f32_pcm(torch.from_numpy(drum_prompt[1])).t()
        if drums.dim() == 1:
            drums = drums[None]
        drums = normalize_audio(drums, strategy="loudness", loudness_headroom_db=16, sample_rate=drums_sr)
        preprocessed_drums_wav = drums

    try:
        outputs = MODEL.generate_music(descriptions=texts, chords=chords,
                                     drums_wav=preprocessed_drums_wav,
                                     melody_salience_matrix=melody_matrix,
                                     drums_sample_rate=drums_sr, progress=progress)
    except RuntimeError as e:
        raise gr.Error("Error while generating " + e.args[0])

    outputs = outputs.detach().cpu().float()
    out_wavs = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_wavs.append(file.name)
            file_cleaner.add(file.name)
    return out_wavs

@spaces.GPU
def predict_full(model, text, chords_sym, melody_file,
                drums_file, drums_mic, drum_input_src,
                cfg_coef_all, cfg_coef_txt,
                ode_rtol, ode_atol,
                ode_solver, ode_steps,
                progress=gr.Progress()):
    global INTERRUPTING
    INTERRUPTING = False
    progress(0, desc="Loading model...")
    load_model(model)

    max_generated = 0

    def _progress(generated, to_generate):
        nonlocal max_generated
        max_generated = max(generated, max_generated)
        progress((min(max_generated, to_generate), to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    
    MODEL.set_custom_progress_callback(_progress)

    drums = drums_mic if drum_input_src == "mic" else drums_file
    wavs = _do_predictions(
        texts=[text] * 2,
        chords=chords_sym,
        drum_prompt=drums,
        melody_matrix=melody_file,
        progress=True,
        gradio_progress=progress,
        cfg_coef_all=cfg_coef_all,
        cfg_coef_txt=cfg_coef_txt,
        ode_rtol=ode_rtol,
        ode_atol=ode_atol,
        euler=ode_solver == 'euler',
        euler_steps=ode_steps)

    return wavs

with gr.Blocks() as demo:
    gr.Markdown("""
    # JASCO - Text-to-Music Generation with Temporal Control
    Generate 10-second music clips using text descriptions and temporal controls (chords, drums, melody).
    """)

    with gr.Row():
        with gr.Column():
            submit = gr.Button("Generate")
            interrupt_btn = gr.Button("Interrupt")

        with gr.Column():
            audio_output_0 = gr.Audio(label="Generated Audio 1", type='filepath')
            audio_output_1 = gr.Audio(label="Generated Audio 2", type='filepath')

    with gr.Row():
        with gr.Column():
            text = gr.Text(label="Input Text",
                          value="Strings, woodwind, orchestral, symphony.",
                          interactive=True)
        with gr.Column():
            model = gr.Radio([
                'facebook/jasco-chords-drums-400M',
                'facebook/jasco-chords-drums-1B',
                'facebook/jasco-chords-drums-melody-400M',
                'facebook/jasco-chords-drums-melody-1B'
            ], label="Model", value='facebook/jasco-chords-drums-melody-400M')

    gr.Markdown("### Chords Conditions")
    chords_sym = gr.Text(
        label="Chord Progression",
        value="(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
        interactive=True
    )

    gr.Markdown("### Drums Conditions")
    with gr.Row():
        drum_input_src = gr.Radio(["file", "mic"], value="file", label="Drums Input Source")
        drums_file = gr.Audio(sources=["upload"], type="numpy", label="Drums File")
        drums_mic = gr.Audio(sources=["microphone"], type="numpy", label="Drums Mic")

    gr.Markdown("### Melody Conditions")
    melody_file = gr.File(label="Melody File")

    with gr.Row():
        cfg_coef_all = gr.Number(label="CFG ALL", value=1.25, step=0.25)
        cfg_coef_txt = gr.Number(label="CFG TEXT", value=2.5, step=0.25)
        ode_tol = gr.Number(label="ODE Tolerance", value=1e-4, step=1e-5)
        ode_solver = gr.Radio(['euler', 'dopri5'], label="ODE Solver", value='euler')
        ode_steps = gr.Number(label="Euler Steps", value=10, step=1)

    submit.click(
        fn=predict_full,
        inputs=[
            model, text, chords_sym, melody_file,
            drums_file, drums_mic, drum_input_src,
            cfg_coef_all, cfg_coef_txt,
            ode_tol, ode_tol, ode_solver, ode_steps
        ],
        outputs=[audio_output_0, audio_output_1]
    )
    
    interrupt_btn.click(fn=interrupt, queue=False)

    gr.Examples(
        examples=[
            [
                "80s pop with groovy synth bass and electric piano",
                "(N, 0.0), (C, 0.32), (Dm7, 3.456), (Am, 4.608), (F, 8.32), (C, 9.216)",
                None,
                None,
            ],
            [
                "Strings, woodwind, orchestral, symphony.",
                "(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
                None,
                None,
            ],
        ],
        inputs=[text, chords_sym, melody_file, drums_file],
        outputs=[audio_output_0, audio_output_1]
    )

demo.queue().launch(ssr_mode=False)