audiocraft / main.py
Tonic's picture
add chord mapping
91d712c unverified
raw
history blame
11.6 kB
import spaces
import logging
import os
import pickle
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from tempfile import NamedTemporaryFile
import time
import typing as tp
import subprocess as sp
import torch
import gradio as gr
from audiocraft.data.audio_utils import f32_pcm, normalize_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import JASCO
import os
from huggingface_hub import login
hf_token = os.environ.get('HFTOKEN')
if hf_token:
login(token=hf_token)
MODEL = None
MAX_BATCH_SIZE = 12
INTERRUPTING = False
os.makedirs(os.path.join(os.path.dirname(__file__), "models"), exist_ok=True)
def generate_chord_mappings():
# Define basic chord mappings
basic_chords = ['N', 'C', 'Dm7', 'Am', 'F', 'D', 'Ab', 'Bb'] + ['UNK']
chord_to_index = {chord: idx for idx, chord in enumerate(basic_chords)}
# Save the mapping
mapping_path = os.path.join(os.path.dirname(__file__), "models", "chord_to_index_mapping.pkl")
os.makedirs(os.path.dirname(mapping_path), exist_ok=True)
with open(mapping_path, "wb") as f:
pickle.dump(chord_to_index, f)
return mapping_path
def create_default_chord_mapping():
"""Create a basic chord-to-index mapping with common chords"""
basic_chords = [
'N', 'C', 'Cm', 'C7', 'Cmaj7', 'Cm7',
'D', 'Dm', 'D7', 'Dmaj7', 'Dm7',
'E', 'Em', 'E7', 'Emaj7', 'Em7',
'F', 'Fm', 'F7', 'Fmaj7', 'Fm7',
'G', 'Gm', 'G7', 'Gmaj7', 'Gm7',
'A', 'Am', 'A7', 'Amaj7', 'Am7',
'B', 'Bm', 'B7', 'Bmaj7', 'Bm7',
'Ab', 'Abm', 'Ab7', 'Abmaj7', 'Abm7',
'Bb', 'Bbm', 'Bb7', 'Bbmaj7', 'Bbm7',
'UNK'
]
return {chord: idx for idx, chord in enumerate(basic_chords)}
def initialize_chord_mapping():
"""Initialize chord mapping file if it doesn't exist"""
mapping_dir = os.path.join(os.path.dirname(__file__), "models")
os.makedirs(mapping_dir, exist_ok=True)
mapping_file = os.path.join(mapping_dir, "chord_to_index_mapping.pkl")
if not os.path.exists(mapping_file):
chord_to_index = create_default_chord_mapping()
with open(mapping_file, "wb") as f:
pickle.dump(chord_to_index, f)
return mapping_file
def validate_chord(chord, chord_mapping):
if chord not in chord_mapping:
return 'UNK'
return chord
mapping_file = initialize_chord_mapping()
os.environ['AUDIOCRAFT_CHORD_MAPPING'] = mapping_file
def chords_string_to_list(chords: str):
if chords == '':
return []
chords = chords.replace('[', '').replace(']', '').replace(' ', '')
chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
# Load chord mapping
mapping_path = os.path.join(os.path.dirname(__file__), "models", "chord_to_index_mapping.pkl")
with open(mapping_path, 'rb') as f:
chord_mapping = pickle.load(f)
return [(validate_chord(x[0], chord_mapping), float(x[1])) for x in chrd_times]
# Wrap subprocess call to clean logs
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocate process pool
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def chords_string_to_list(chords: str):
if chords == '':
return []
chords = chords.replace('[', '').replace(']', '').replace(' ', '')
chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
return [(x[0], float(x[1])) for x in chrd_times]
# Create necessary directories
os.makedirs("models", exist_ok=True)
@spaces.GPU
def load_model(version='facebook/jasco-chords-drums-400M'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = None
# Setup model directory
model_dir = os.path.join(os.path.dirname(__file__), "models")
os.makedirs(model_dir, exist_ok=True)
# Generate and save chord mappings
chord_mapping_path = os.path.join(model_dir, "chord_to_index_mapping.pkl")
if not os.path.exists(chord_mapping_path):
chord_mapping_path = generate_chord_mappings()
try:
# Initialize JASCO with the chord mapping path
MODEL = JASCO.get_pretrained(
version,
device='cuda',
chords_mapping_path=chord_mapping_path
)
MODEL.name = version
except Exception as e:
raise gr.Error(f"Error loading model: {str(e)}")
if MODEL is None:
raise gr.Error("Failed to load model")
return MODEL
@spaces.GPU
def _do_predictions(texts, chords, melody_matrix, drum_prompt, progress=False, gradio_progress=None, **gen_kwargs):
MODEL.set_generation_params(**gen_kwargs)
be = time.time()
chords = chords_string_to_list(chords)
if melody_matrix is not None:
melody_matrix = torch.load(melody_matrix.name, weights_only=True)
if len(melody_matrix.shape) != 2:
raise gr.Error(f"Melody matrix should be a torch tensor of shape [n_melody_bins, T]; got: {melody_matrix.shape}")
if melody_matrix.shape[0] > melody_matrix.shape[1]:
melody_matrix = melody_matrix.permute(1, 0)
if drum_prompt is None:
preprocessed_drums_wav = None
drums_sr = 32000
else:
drums_sr, drums = drum_prompt[0], f32_pcm(torch.from_numpy(drum_prompt[1])).t()
if drums.dim() == 1:
drums = drums[None]
drums = normalize_audio(drums, strategy="loudness", loudness_headroom_db=16, sample_rate=drums_sr)
preprocessed_drums_wav = drums
try:
outputs = MODEL.generate_music(descriptions=texts, chords=chords,
drums_wav=preprocessed_drums_wav,
melody_salience_matrix=melody_matrix,
drums_sample_rate=drums_sr, progress=progress)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_wavs.append(file.name)
file_cleaner.add(file.name)
return out_wavs
@spaces.GPU
def predict_full(model, text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt,
ode_rtol, ode_atol,
ode_solver, ode_steps,
progress=gr.Progress()):
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
drums = drums_mic if drum_input_src == "mic" else drums_file
wavs = _do_predictions(
texts=[text] * 2,
chords=chords_sym,
drum_prompt=drums,
melody_matrix=melody_file,
progress=True,
gradio_progress=progress,
cfg_coef_all=cfg_coef_all,
cfg_coef_txt=cfg_coef_txt,
ode_rtol=ode_rtol,
ode_atol=ode_atol,
euler=ode_solver == 'euler',
euler_steps=ode_steps)
return wavs
with gr.Blocks() as demo:
gr.Markdown("""
# JASCO - Text-to-Music Generation with Temporal Control
Generate 10-second music clips using text descriptions and temporal controls (chords, drums, melody).
""")
with gr.Row():
with gr.Column():
submit = gr.Button("Generate")
interrupt_btn = gr.Button("Interrupt")
with gr.Column():
audio_output_0 = gr.Audio(label="Generated Audio 1", type='filepath')
audio_output_1 = gr.Audio(label="Generated Audio 2", type='filepath')
with gr.Row():
with gr.Column():
text = gr.Text(label="Input Text",
value="Strings, woodwind, orchestral, symphony.",
interactive=True)
with gr.Column():
model = gr.Radio([
'facebook/jasco-chords-drums-400M',
'facebook/jasco-chords-drums-1B',
'facebook/jasco-chords-drums-melody-400M',
'facebook/jasco-chords-drums-melody-1B'
], label="Model", value='facebook/jasco-chords-drums-melody-400M')
gr.Markdown("### Chords Conditions")
chords_sym = gr.Text(
label="Chord Progression",
value="(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
interactive=True
)
gr.Markdown("### Drums Conditions")
with gr.Row():
drum_input_src = gr.Radio(["file", "mic"], value="file", label="Drums Input Source")
drums_file = gr.Audio(sources=["upload"], type="numpy", label="Drums File")
drums_mic = gr.Audio(sources=["microphone"], type="numpy", label="Drums Mic")
gr.Markdown("### Melody Conditions")
melody_file = gr.File(label="Melody File")
with gr.Row():
cfg_coef_all = gr.Number(label="CFG ALL", value=1.25, step=0.25)
cfg_coef_txt = gr.Number(label="CFG TEXT", value=2.5, step=0.25)
ode_tol = gr.Number(label="ODE Tolerance", value=1e-4, step=1e-5)
ode_solver = gr.Radio(['euler', 'dopri5'], label="ODE Solver", value='euler')
ode_steps = gr.Number(label="Euler Steps", value=10, step=1)
submit.click(
fn=predict_full,
inputs=[
model, text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt,
ode_tol, ode_tol, ode_solver, ode_steps
],
outputs=[audio_output_0, audio_output_1]
)
interrupt_btn.click(fn=interrupt, queue=False)
gr.Examples(
examples=[
[
"80s pop with groovy synth bass and electric piano",
"(N, 0.0), (C, 0.32), (Dm7, 3.456), (Am, 4.608), (F, 8.32), (C, 9.216)",
None,
None,
],
[
"Strings, woodwind, orchestral, symphony.",
"(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
None,
None,
],
],
inputs=[text, chords_sym, melody_file, drums_file],
outputs=[audio_output_0, audio_output_1]
)
demo.queue().launch(ssr_mode=False)