import os import math import transformers from transformers import AutoModelForCausalLM, AutoTokenizer , TextStreamer import torch import gradio as gr import sentencepiece title = "# Welcome to 🙋🏻‍♂️Tonic's🧠🤌🏻Neural Chat (From Intel)!" description = """Try out [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) the Instruct of [Intel/neural-chat-7b-v3](https://huggingface.co/Intel/neural-chat-7b-v3) Llama Finetune using the [mistralai/Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) recipe. You can use [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) here via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/TeamTonic/NeuralChat?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together!. """ os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50' device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_name = "Intel/neural-chat-7b-v3-1" tokenizer = AutoTokenizer.from_pretrained("Intel/neural-chat-7b-v3-1") model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") streamer = TextStreamer(tokenizer) class IntelChatBot: def __init__(self, model, tokenizer, system_message="You are 🧠🤌🏻Neuro, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."): self.model = model self.tokenizer = tokenizer self.system_message = system_message def set_system_message(self, new_system_message): self.system_message = new_system_message def format_prompt(self, user_message): prompt = f"### System:\n {self.system_message}\n ### User:\n{user_message}\n### System:\n" return prompt def neuro(self, user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample): prompt = self.format_prompt(user_message) inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False) input_ids = inputs["input_ids"].to(self.model.device) attention_mask = inputs["attention_mask"].to(self.model.device) output_ids = self.model.generate( input_ids, attention_mask=attention_mask, max_length=input_ids.shape[1] + max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, streamer=streamer, do_sample=do_sample ) response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) return response def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample): Intel_bot.set_system_message(system_message) if not do_sample: max_length = 780 temperature = 0.9 top_p = 0.9 repetition_penalty = 0.9 response = Intel_bot.neuro(user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample) return response Intel_bot = IntelChatBot(model, tokenizer) with gr.Blocks(theme = "ParityError/Anime") as demo: gr.Markdown(title) gr.Markdown(description) with gr.Row(): system_message = gr.Textbox(label="Optional 🧠🤌🏻NeuralChat Assistant Message", lines=2) user_message = gr.Textbox(label="Your Message", lines=3) with gr.Row(): do_sample = gr.Checkbox(label="Advanced", value=False) with gr.Accordion("Advanced Settings", open=lambda do_sample: do_sample): with gr.Row(): max_new_tokens = gr.Slider(label="Max new tokens", value=780, minimum=150, maximum=3200, step=1) temperature = gr.Slider(label="Temperature", value=0.3, minimum=0.1, maximum=1.0, step=0.1) top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05) repetition_penalty = gr.Slider(label="Repetition penalty", value=0.9, minimum=1.0, maximum=1.0, step=0.05) submit_button = gr.Button("Submit") output_text = gr.Textbox(label="🧠🤌🏻NeuralChat Response") def process(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample): return gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample) submit_button.click( process, inputs=[user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample], outputs=output_text ) demo.launch()