Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,117 +1,79 @@
|
|
1 |
-
import
|
2 |
-
import math
|
3 |
-
import transformers
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
|
|
6 |
import gradio as gr
|
7 |
import sentencepiece
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
output_ids = self.model.generate(
|
51 |
-
input_ids,
|
52 |
-
attention_mask=attention_mask,
|
53 |
-
max_length=input_ids.shape[1] + max_new_tokens,
|
54 |
-
temperature=temperature,
|
55 |
-
top_p=top_p,
|
56 |
-
repetition_penalty=repetition_penalty,
|
57 |
-
do_sample=do_sample
|
58 |
-
)
|
59 |
-
|
60 |
-
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
61 |
-
response = response.strip()
|
62 |
-
response = response.split("<|assistant|>\n")[-1]
|
63 |
-
return response
|
64 |
-
finally:
|
65 |
-
del input_ids, attention_mask, output_ids
|
66 |
-
gc.collect()
|
67 |
-
torch.cuda.empty_cache()
|
68 |
-
|
69 |
-
def gradio_Tulu(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
|
70 |
-
Tulu_bot.set_system_message(system_message)
|
71 |
-
if not do_sample:
|
72 |
-
max_length = 780
|
73 |
-
temperature = 0.9
|
74 |
-
top_p = 0.9
|
75 |
-
repetition_penalty = 0.9
|
76 |
-
response = Tulu_bot.Tulu(user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample)
|
77 |
-
return response
|
78 |
-
|
79 |
-
# Initialize TuluChatBot
|
80 |
-
Tulu_bot = TuluChatBot(model, tokenizer)
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
return response
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
with gr.
|
90 |
-
|
91 |
-
gr.Markdown(description)
|
92 |
-
with gr.Row():
|
93 |
-
system_message = gr.Textbox(label="Optional 🌷Tulu Assistant Message", lines=2)
|
94 |
-
user_message = gr.Textbox(label="Your Message", lines=3)
|
95 |
-
with gr.Row():
|
96 |
-
do_sample = gr.Checkbox(label="Advanced", value=True)
|
97 |
-
|
98 |
-
with gr.Accordion("Advanced Settings", open=lambda do_sample: do_sample):
|
99 |
-
with gr.Row():
|
100 |
-
max_new_tokens = gr.Slider(label="Max new tokens", value=250, minimum=20, maximum=450, step=1)
|
101 |
-
temperature = gr.Slider(label="Temperature", value=0.3, minimum=0.1, maximum=1.0, step=0.1)
|
102 |
-
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05)
|
103 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", value=0.9, minimum=0.05, maximum=1.0, step=0.05)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
|
111 |
submit_button.click(
|
112 |
-
|
113 |
-
inputs=[
|
114 |
-
outputs=
|
115 |
)
|
116 |
-
|
117 |
demo.launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
import os
|
4 |
import gradio as gr
|
5 |
import sentencepiece
|
6 |
+
from tokenization_yi import YiTokenizer
|
7 |
+
|
8 |
+
|
9 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120'
|
10 |
+
model_id = "01-ai/Yi-6B-200K"
|
11 |
+
tokenizer_path = "./"
|
12 |
+
eos_token_id = 7
|
13 |
+
|
14 |
+
DESCRIPTION = """
|
15 |
+
# 👋🏻Welcome to 🙋🏻♂️Tonic's🧑🏻🚀YI-200K🚀
|
16 |
+
You can use this Space to test out the current model [01-ai/Yi-6B-200k](https://huggingface.co/01-ai/Yi-6B-200k) "🦙Llamified" version based on [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B)
|
17 |
+
You can also use 🧑🏻🚀YI-200K🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/YiTonic?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
18 |
+
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
|
19 |
+
"""
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
|
22 |
+
# tokenizer = YiTokenizer.from_pretrained(tokenizer_path)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
24 |
+
tokenizer.eos_token_id = eos_token_id
|
25 |
+
model.config.eos_token_id = eos_token_id
|
26 |
+
|
27 |
+
def format_prompt(user_message, system_message="You are YiTonic, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and follow ethical guidelines and promote positive behavior."):
|
28 |
+
prompt = f"<|im_start|>assistant\n{system_message}<|im_end|>\n<|im_start|>\nuser\n{user_message}<|im_end|>\nassistant\n"
|
29 |
+
return prompt
|
30 |
+
|
31 |
+
def predict(message, system_message, max_new_tokens=4056, temperature=3.5, top_p=0.9, top_k=40, model_max_length = 32000, do_sample=False):
|
32 |
+
formatted_prompt = format_prompt(message, system_message)
|
33 |
+
|
34 |
+
input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt')
|
35 |
+
input_ids = input_ids.to(model.device)
|
36 |
+
|
37 |
+
response_ids = model.generate(
|
38 |
+
input_ids,
|
39 |
+
max_length=max_new_tokens + input_ids.shape[1],
|
40 |
+
temperature=temperature,
|
41 |
+
top_p=top_p,
|
42 |
+
top_k=top_k,
|
43 |
+
no_repeat_ngram_size=9,
|
44 |
+
pad_token_id=tokenizer.eos_token_id,
|
45 |
+
do_sample=do_sample
|
46 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
49 |
+
truncate_str = "<|im_end|>"
|
50 |
+
if truncate_str and truncate_str in response:
|
51 |
+
response = response.split(truncate_str)[0]
|
|
|
52 |
|
53 |
+
return [("bot", response)]
|
54 |
+
with gr.Blocks(theme='ParityError/Anime') as demo:
|
55 |
+
gr.Markdown(DESCRIPTION)
|
56 |
+
with gr.Group():
|
57 |
+
textbox = gr.Textbox(placeholder='Your Message Here', label='Your Message', lines=2)
|
58 |
+
system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="You are YiTonic, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.")
|
59 |
|
60 |
+
with gr.Group():
|
61 |
+
chatbot = gr.Chatbot(label='TonicYi-6B-200K-🧠🤯')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
with gr.Group():
|
64 |
+
submit_button = gr.Button('Submit', variant='primary')
|
65 |
|
66 |
+
with gr.Accordion(label='Advanced options', open=False):
|
67 |
+
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=55000, step=1, value=4056)
|
68 |
+
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.2)
|
69 |
+
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
70 |
+
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=40)
|
71 |
+
do_sample_checkbox = gr.Checkbox(label='Disable for faster inference', value=True)
|
72 |
|
73 |
submit_button.click(
|
74 |
+
fn=predict,
|
75 |
+
inputs=[textbox, system_prompt, max_new_tokens, temperature, top_p, top_k, do_sample_checkbox],
|
76 |
+
outputs=chatbot
|
77 |
)
|
78 |
+
|
79 |
demo.launch()
|