AI_Detector / app.py
mihalykiss's picture
UI - theme
5b36832
raw
history blame
3.89 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_path = "modernbert.bin"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
label_mapping = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True)
inputs = {key: value.to(device) for key, value in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)[0]
predicted_class = torch.argmax(probabilities).item()
confidence = probabilities[predicted_class].item() * 100 # Confidence as %
if predicted_class == 24:
prediction_label = f"βœ… - The text is **{confidence:.2f}%** likely **Human written**."
model_info = ""
else:
prediction_label = f"πŸ€– - The text is **{confidence:.2f}%** likely **AI generated**."
model_info = f"**Identified AI Model:** {label_mapping[predicted_class]}"
result_message = f"**Result:**\n\n{prediction_label}"
if model_info:
result_message += f"\n\n{model_info}"
return result_message
title = "AI Text Detector"
description = """
**AI detection tool by SzegedAI**
Detect AI-generated texts with precision using the new **ModernBERT** model, fine-tuned for machine-generated text detection, and capable of identifying 40 different models.
- **πŸ€– Identify AI Models**: Reveals which LLM generated the text if detected as AI.
- **βœ… Human Verification**: Marks confidently human-written text with a green checkmark.
**Press the button below to classify your text!**
"""
iface = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(
label="Enter Text for Analysis",
placeholder="Type or paste your content here...",
lines=5,
elem_id="text_input_box"
),
outputs=gr.Markdown(elem_id="result_output_box"),
title=title,
description=description,
allow_flagging="never",
live=False,
css="""
#text_input_box {
border-radius: 10px;
border: 2px solid #4CAF50;
font-size: 18px;
padding: 10px;
}
#result_output_box {
border-radius: 10px;
border: 2px solid #4CAF50;
font-size: 18px;
padding: 15px;
background-color: #2E2E3F;
margin-top: 20px;
}
body {
background: #1E1E2F;
color: #E1E1E6;
font-family: 'Aptos', sans-serif;
padding: 20px;
}
.gradio-container {
border: 2px solid #4CAF50;
border-radius: 15px;
padding: 25px;
box-shadow: 0px 0px 20px rgba(0,255,0,0.6);
}
h1, h2 {
text-align: center;
font-size: 32px;
font-weight: bold;
margin-bottom: 20px;
}
"""
)
if __name__ == "__main__":
iface.launch(share=True)