Spaces:
Sleeping
Sleeping
mihalykiss
commited on
Commit
·
dad3685
1
Parent(s):
72241b4
second model ensemble
Browse files
app.py
CHANGED
@@ -3,12 +3,18 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
3 |
import torch
|
4 |
|
5 |
model_path = "modernbert.bin"
|
|
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
label_mapping = {
|
14 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
@@ -30,7 +36,11 @@ def classify_text(text):
|
|
30 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
31 |
|
32 |
with torch.no_grad():
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
ai_probs = probabilities.clone()
|
36 |
ai_probs[24] = 0
|
@@ -53,7 +63,6 @@ def classify_text(text):
|
|
53 |
return result_message
|
54 |
|
55 |
|
56 |
-
|
57 |
title = "AI Text Detector"
|
58 |
|
59 |
description = """
|
|
|
3 |
import torch
|
4 |
|
5 |
model_path = "modernbert.bin"
|
6 |
+
huggingface_model_url = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
|
7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
|
9 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
10 |
+
|
11 |
+
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
12 |
+
model_1.load_state_dict(torch.load(model_path, map_location=device))
|
13 |
+
model_1.to(device).eval()
|
14 |
+
|
15 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
16 |
+
model_2.load_state_dict(torch.hub.load_state_dict_from_url(huggingface_model_url, map_location=device))
|
17 |
+
model_2.to(device).eval()
|
18 |
|
19 |
label_mapping = {
|
20 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
|
|
36 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
37 |
|
38 |
with torch.no_grad():
|
39 |
+
logits_1 = model_1(**inputs).logits
|
40 |
+
logits_2 = model_2(**inputs).logits
|
41 |
+
|
42 |
+
avg_logits = (logits_1 + logits_2) / 2
|
43 |
+
probabilities = torch.softmax(avg_logits, dim=1)[0]
|
44 |
|
45 |
ai_probs = probabilities.clone()
|
46 |
ai_probs[24] = 0
|
|
|
63 |
return result_message
|
64 |
|
65 |
|
|
|
66 |
title = "AI Text Detector"
|
67 |
|
68 |
description = """
|