import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_path = "modernbert.bin" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base") model = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() label_mapping = { 0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b', 6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b', 11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small', 14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it', 18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o', 22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b', 27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b', 31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b', 35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b', 39: 'text-davinci-002', 40: 'text-davinci-003' } def classify_text(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) inputs = {key: value.to(device) for key, value in inputs.items()} with torch.no_grad(): outputs = model(**inputs) probabilities = torch.softmax(outputs.logits, dim=1)[0] predicted_class = torch.argmax(probabilities).item() confidence = probabilities[predicted_class].item() if predicted_class == 24: prediction_label = "✅ **Human Written**" confidence_message = f"🔒 **Confidence:** {confidence:.2f}" if confidence > 0.8: confidence_message += " (Highly Likely Human)" else: prediction_label = f"🤖 **AI Generated by {label_mapping[predicted_class]}**" confidence_message = f"🔒 **Confidence:** {confidence:.2f}" if confidence > 0.8: confidence_message += " (Highly Likely AI)" return f"**Result:**\n\n{prediction_label}\n\n{confidence_message}" title = "🧠 SzegedAI ModernBERT Text Detector" description = ( """ **AI Detection Tool by SzegedAI** **Detect AI-generated texts with precision.** This tool uses the new **ModernBERT** model, fine-tuned for machine-generated text detection, and able to detect 40 different models. - **🤖 Identify AI Models**: If detected as AI-generated, the system will reveal which LLM was responsible for the text generation. - **✅ Human Verification**: If confidently human, the result will be marked with a **green checkmark**. **Press the button below to classify your text!** """ ) iface = gr.Interface( fn=classify_text, inputs=gr.Textbox( label="✏️ Enter Text for Analysis", placeholder="Type or paste your content here...", lines=5, elem_id="text_input_box" ), outputs=gr.Textbox( label="Detection Results", lines=4, elem_id="result_output_box" ), title=title, description=description, theme="dark", allow_flagging="never", live=False, submit_button="🎯 Analyze Now", css=""" #text_input_box, #result_output_box { border-radius: 10px; border: 2px solid #4CAF50; font-size: 18px; } body { background: #1E1E2F; color: #E1E1E6; font-family: 'Aptos', sans-serif; padding: 20px; } .gradio-container { border: 2px solid #4CAF50; border-radius: 15px; padding: 20px; box-shadow: 0px 0px 20px rgba(0,255,0,0.6); } h1, h2 { text-align: center; font-size: 32px; font-weight: bold; } """ ) if __name__ == "__main__": iface.launch(share=True)