File size: 11,324 Bytes
5e89ee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb1e05
5e89ee6
bfb1e05
 
 
 
 
 
 
 
 
 
 
 
 
5e89ee6
 
 
 
0444fba
 
 
5e89ee6
 
 
0444fba
5e89ee6
0444fba
bfb1e05
 
 
1e5949a
933c489
 
 
0444fba
5e89ee6
 
 
 
 
 
 
 
0444fba
5e89ee6
 
 
 
 
0444fba
 
 
aac732c
 
5e89ee6
0444fba
5e89ee6
 
 
f1c8407
5e89ee6
0444fba
8e7d1ea
0444fba
5e89ee6
157d28c
5e89ee6
 
0444fba
 
f3c2885
f1c8407
 
0444fba
f1c8407
 
 
 
 
 
0444fba
aac732c
 
 
 
 
 
 
 
0444fba
 
995cb33
 
0444fba
 
5e89ee6
0444fba
5e89ee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fb10c8
 
9d4c2df
5e89ee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import streamlit as st

from datasets import load_dataset

import numpy as np
import os
from sklearn.metrics import accuracy_score, precision_recall_fscore_support

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification
from transformers import DebertaV2Config, DebertaV2ForTokenClassification

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" 

# print weights
def print_trainable_parameters(model):
    pytorch_total_params = sum(p.numel() for p in model.parameters())
    torch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f'total params: {pytorch_total_params}. tunable params: {torch_total_params}')

device = torch.device('cpu')
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
if torch.cuda.is_available():
    print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
    device = torch.device('cuda')

# Load models
st.write('Loading the pretrained model ...')
teacher_model_name = "iiiorg/piiranha-v1-detect-personal-information"
teacher_model = AutoModelForTokenClassification.from_pretrained(teacher_model_name)
tokenizer = AutoTokenizer.from_pretrained(teacher_model_name)
print(teacher_model)
print_trainable_parameters(teacher_model)
label2id = teacher_model.config.label2id
id2label = teacher_model.config.id2label 

st.write("id2label: ", id2label)
st.write("label2id: ", label2id)
dimension = len(id2label)
st.write("dimension", dimension)

student_model_config = teacher_model.config
student_model_config.num_attention_heads = 8
student_model_config.num_hidden_layers = 4
student_model = DebertaV2ForTokenClassification.from_pretrained(
    "microsoft/mdeberta-v3-base",
    config=student_model_config)
#    ignore_mismatched_sizes=True)
print(student_model)
print_trainable_parameters(student_model)

if torch.cuda.is_available():
    teacher_model = teacher_model.to(device)
    student_model = student_model.to(device)

# Load data. 
raw_dataset = load_dataset("ai4privacy/pii-masking-400k", split='train')
raw_dataset = raw_dataset.filter(lambda example: example["language"].startswith("en"))
#raw_dataset = raw_dataset.select(range(2000))
raw_dataset = raw_dataset.filter(lambda example, idx: idx % 11 == 0, with_indices=True)
raw_dataset = raw_dataset.train_test_split(test_size=0.2)
print(raw_dataset)
print(raw_dataset.column_names)

# inputs = tokenizer(
#     raw_dataset['train'][0]['mbert_tokens'],
#     truncation=True,
#     is_split_into_words=True)
# print(inputs)
# print(inputs.tokens())
# print(inputs.word_ids())

# function to align labels with tokens 
# --> special tokens: -100 label id (ignored by cross entropy),
# --> if tokens are inside a word, replace 'B-' with 'I-' 
def align_labels_with_tokens(label, word_ids):
    aligned_label_ids = []
    previous_word_idx = None
    for word_idx in word_ids:  # Set the special tokens to -100.
        if word_idx is None:
            aligned_label_ids.append(-100)
        elif word_idx != previous_word_idx:  # Only label the first token of a given word.
            if label.startswith("B-"):
                print(word_idx)
                print(label)
                label = label.replace("B-", "I-")
            aligned_label_ids.append(label[word_idx])
        else:
            aligned_label_ids.append(-100)
        previous_word_idx = word_idx
    return aligned_label_ids

# create tokenize function
def tokenize_function(examples):
    # tokenize and truncate text. The examples argument would have already stripped
    # the train or test label.
    new_labels = []
    inputs = tokenizer(
        examples['mbert_tokens'],
        is_split_into_words=True,
        padding=True,
        truncation=True,
        max_length=512)
    for i, label in enumerate(examples['mbert_token_classes']):
        word_ids = inputs.word_ids(batch_index=i)
        new_labels.append(align_labels_with_tokens(label, word_ids))
    print("Printing partial input with tokenized output")
    print(inputs.tokens()[:1000])
    print(inputs.word_ids()[:1000])
    print(new_labels[:1000])
    inputs["labels"] = new_labels
    return inputs

# tokenize training and validation datasets
tokenized_data = raw_dataset.map(
    tokenize_function,
    batched=True)
tokenized_data.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# data collator
data_collator = DataCollatorForTokenClassification(tokenizer)

st.write(tokenized_data["train"][:2]["labels"])

# Function to evaluate model performance
def evaluate_model(model, dataloader, device):
    model.eval()  # Set model to evaluation mode
    all_preds = []
    all_labels = []
    sample_count = 0
    num_samples=100

    # Disable gradient calculations
    with torch.no_grad():
        for batch in dataloader:
            input_ids = batch['input_ids'].to(device)
            current_batch_size = input_ids.size(0)
            attention_mask = batch['attention_mask'].to(device)
            labels = batch['labels'].to(device).cpu().numpy()

            # Forward pass to get logits
            outputs = model(input_ids, attention_mask=attention_mask)

            logits = outputs.logits

            # Get predictions
            preds = torch.argmax(logits, dim=-1).cpu().numpy()

             # Use attention mask to get valid tokens
            mask = batch['attention_mask'].cpu().numpy().astype(bool)
            
            # Process each sequence in the batch
            for i in range(current_batch_size):
                valid_preds = preds[i][mask[i]].flatten()
                valid_labels = labels[i][mask[i]].flatten()
                all_preds.extend(valid_preds.tolist())
                all_labels.extend(valid_labels.tolist())

                if sample_count < num_samples:
                    print(f"Sample {sample_count + 1}:")
                    print(f"Tokens: {tokenizer.convert_ids_to_tokens(input_ids[i])}")
                    print(f"True Labels: {[id2label[label] for label in valid_labels]}")
                    print(f"Predicted Labels: {[id2label[pred] for pred in valid_preds]}")
                    print("-" * 50)
                    sample_count += 1

    # Calculate evaluation metrics
    print("evaluate_model sizes")
    print(len(all_preds))
    print(len(all_labels))
    all_preds = np.asarray(all_preds, dtype=np.float32)
    all_labels = np.asarray(all_labels, dtype=np.float32)
    accuracy = accuracy_score(all_labels, all_preds)
    precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average='micro')

    return accuracy, precision, recall, f1

# Function to compute distillation and hard-label loss
def distillation_loss(student_logits, teacher_logits, true_labels, temperature, alpha):
    # print("Distillation loss sizes")
    # print(teacher_logits.size())
    # print(student_logits.size())
    # print(true_labels.size())
    # Compute soft targets from teacher logits
    soft_targets = nn.functional.softmax(teacher_logits / temperature, dim=-1)
    student_soft = nn.functional.log_softmax(student_logits / temperature, dim=-1)

    # KL Divergence loss for distillation
    distill_loss = nn.functional.kl_div(student_soft, soft_targets, reduction='batchmean') * (temperature ** 2)

    # Cross-entropy loss for hard labels
    student_logit_reshape = torch.transpose(student_logits, 1, 2) # transpose to match the labels dimension
    hard_loss = nn.CrossEntropyLoss()(student_logit_reshape, true_labels)

    # Combine losses
    loss = alpha * distill_loss + (1.0 - alpha) * hard_loss

    return loss

# hyperparameters
batch_size = 32
lr = 1e-4
num_epochs = 30
temperature = 2.0
alpha = 0.5

# define optimizer
optimizer = optim.Adam(student_model.parameters(), lr=lr)

# create training data loader
dataloader = DataLoader(tokenized_data['train'], batch_size=batch_size, collate_fn=data_collator)
# create testing data loader
test_dataloader = DataLoader(tokenized_data['test'], batch_size=batch_size, collate_fn=data_collator)

untrained_student_accuracy, untrained_student_precision, untrained_student_recall, untrained_student_f1 = evaluate_model(student_model, test_dataloader, device)
print(f"Untrained Student (test) - Accuracy: {untrained_student_accuracy:.4f}, Precision: {untrained_student_precision:.4f}, Recall: {untrained_student_recall:.4f}, F1 Score: {untrained_student_f1:.4f}")

# put student model in train mode
student_model.train()

# train model
for epoch in range(num_epochs):
    for batch in dataloader:
        # Prepare inputs
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        labels = batch['labels'].to(device)

        # Disable gradient calculation for teacher model
        with torch.no_grad():
            teacher_outputs = teacher_model(input_ids, attention_mask=attention_mask)
            teacher_logits = teacher_outputs.logits

        # Forward pass through the student model
        student_outputs = student_model(input_ids, attention_mask=attention_mask)
        student_logits = student_outputs.logits

        # Compute the distillation loss
        loss = distillation_loss(student_logits, teacher_logits, labels, temperature, alpha)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    print(f"Epoch {epoch + 1} completed with loss: {loss.item()}")

    # Evaluate the teacher model
    teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, test_dataloader, device)
    print(f"Teacher (test) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")

    # Evaluate the student model
    student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, test_dataloader, device)
    print(f"Student (test) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
    print("\n")

    # put student model back into train mode
    student_model.train()

#Compare the models
# create testing data loader
validation_dataloader = DataLoader(tokenized_data['test'], batch_size=8, collate_fn=data_collator)
# Evaluate the teacher model
teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, validation_dataloader, device)
print(f"Teacher (validation) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
# Evaluate the student model
student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, validation_dataloader, device)
print(f"Student (validation) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
     

st.write('Pushing model to huggingface')

# Push model to huggingface
hf_name = 'CarolXia' # your hf username or org name
mode_name = "pii-kd-deberta-v2"
model_id = hf_name + "/" + mode_name
student_model.push_to_hub(model_id, token=st.secrets["HUGGINGFACE_TOKEN"])