Spaces:
Sleeping
Sleeping
File size: 11,324 Bytes
5e89ee6 bfb1e05 5e89ee6 bfb1e05 5e89ee6 0444fba 5e89ee6 0444fba 5e89ee6 0444fba bfb1e05 1e5949a 933c489 0444fba 5e89ee6 0444fba 5e89ee6 0444fba aac732c 5e89ee6 0444fba 5e89ee6 f1c8407 5e89ee6 0444fba 8e7d1ea 0444fba 5e89ee6 157d28c 5e89ee6 0444fba f3c2885 f1c8407 0444fba f1c8407 0444fba aac732c 0444fba 995cb33 0444fba 5e89ee6 0444fba 5e89ee6 4fb10c8 9d4c2df 5e89ee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import streamlit as st
from datasets import load_dataset
import numpy as np
import os
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification
from transformers import DebertaV2Config, DebertaV2ForTokenClassification
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# print weights
def print_trainable_parameters(model):
pytorch_total_params = sum(p.numel() for p in model.parameters())
torch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'total params: {pytorch_total_params}. tunable params: {torch_total_params}')
device = torch.device('cpu')
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
device = torch.device('cuda')
# Load models
st.write('Loading the pretrained model ...')
teacher_model_name = "iiiorg/piiranha-v1-detect-personal-information"
teacher_model = AutoModelForTokenClassification.from_pretrained(teacher_model_name)
tokenizer = AutoTokenizer.from_pretrained(teacher_model_name)
print(teacher_model)
print_trainable_parameters(teacher_model)
label2id = teacher_model.config.label2id
id2label = teacher_model.config.id2label
st.write("id2label: ", id2label)
st.write("label2id: ", label2id)
dimension = len(id2label)
st.write("dimension", dimension)
student_model_config = teacher_model.config
student_model_config.num_attention_heads = 8
student_model_config.num_hidden_layers = 4
student_model = DebertaV2ForTokenClassification.from_pretrained(
"microsoft/mdeberta-v3-base",
config=student_model_config)
# ignore_mismatched_sizes=True)
print(student_model)
print_trainable_parameters(student_model)
if torch.cuda.is_available():
teacher_model = teacher_model.to(device)
student_model = student_model.to(device)
# Load data.
raw_dataset = load_dataset("ai4privacy/pii-masking-400k", split='train')
raw_dataset = raw_dataset.filter(lambda example: example["language"].startswith("en"))
#raw_dataset = raw_dataset.select(range(2000))
raw_dataset = raw_dataset.filter(lambda example, idx: idx % 11 == 0, with_indices=True)
raw_dataset = raw_dataset.train_test_split(test_size=0.2)
print(raw_dataset)
print(raw_dataset.column_names)
# inputs = tokenizer(
# raw_dataset['train'][0]['mbert_tokens'],
# truncation=True,
# is_split_into_words=True)
# print(inputs)
# print(inputs.tokens())
# print(inputs.word_ids())
# function to align labels with tokens
# --> special tokens: -100 label id (ignored by cross entropy),
# --> if tokens are inside a word, replace 'B-' with 'I-'
def align_labels_with_tokens(label, word_ids):
aligned_label_ids = []
previous_word_idx = None
for word_idx in word_ids: # Set the special tokens to -100.
if word_idx is None:
aligned_label_ids.append(-100)
elif word_idx != previous_word_idx: # Only label the first token of a given word.
if label.startswith("B-"):
print(word_idx)
print(label)
label = label.replace("B-", "I-")
aligned_label_ids.append(label[word_idx])
else:
aligned_label_ids.append(-100)
previous_word_idx = word_idx
return aligned_label_ids
# create tokenize function
def tokenize_function(examples):
# tokenize and truncate text. The examples argument would have already stripped
# the train or test label.
new_labels = []
inputs = tokenizer(
examples['mbert_tokens'],
is_split_into_words=True,
padding=True,
truncation=True,
max_length=512)
for i, label in enumerate(examples['mbert_token_classes']):
word_ids = inputs.word_ids(batch_index=i)
new_labels.append(align_labels_with_tokens(label, word_ids))
print("Printing partial input with tokenized output")
print(inputs.tokens()[:1000])
print(inputs.word_ids()[:1000])
print(new_labels[:1000])
inputs["labels"] = new_labels
return inputs
# tokenize training and validation datasets
tokenized_data = raw_dataset.map(
tokenize_function,
batched=True)
tokenized_data.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# data collator
data_collator = DataCollatorForTokenClassification(tokenizer)
st.write(tokenized_data["train"][:2]["labels"])
# Function to evaluate model performance
def evaluate_model(model, dataloader, device):
model.eval() # Set model to evaluation mode
all_preds = []
all_labels = []
sample_count = 0
num_samples=100
# Disable gradient calculations
with torch.no_grad():
for batch in dataloader:
input_ids = batch['input_ids'].to(device)
current_batch_size = input_ids.size(0)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device).cpu().numpy()
# Forward pass to get logits
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits
# Get predictions
preds = torch.argmax(logits, dim=-1).cpu().numpy()
# Use attention mask to get valid tokens
mask = batch['attention_mask'].cpu().numpy().astype(bool)
# Process each sequence in the batch
for i in range(current_batch_size):
valid_preds = preds[i][mask[i]].flatten()
valid_labels = labels[i][mask[i]].flatten()
all_preds.extend(valid_preds.tolist())
all_labels.extend(valid_labels.tolist())
if sample_count < num_samples:
print(f"Sample {sample_count + 1}:")
print(f"Tokens: {tokenizer.convert_ids_to_tokens(input_ids[i])}")
print(f"True Labels: {[id2label[label] for label in valid_labels]}")
print(f"Predicted Labels: {[id2label[pred] for pred in valid_preds]}")
print("-" * 50)
sample_count += 1
# Calculate evaluation metrics
print("evaluate_model sizes")
print(len(all_preds))
print(len(all_labels))
all_preds = np.asarray(all_preds, dtype=np.float32)
all_labels = np.asarray(all_labels, dtype=np.float32)
accuracy = accuracy_score(all_labels, all_preds)
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average='micro')
return accuracy, precision, recall, f1
# Function to compute distillation and hard-label loss
def distillation_loss(student_logits, teacher_logits, true_labels, temperature, alpha):
# print("Distillation loss sizes")
# print(teacher_logits.size())
# print(student_logits.size())
# print(true_labels.size())
# Compute soft targets from teacher logits
soft_targets = nn.functional.softmax(teacher_logits / temperature, dim=-1)
student_soft = nn.functional.log_softmax(student_logits / temperature, dim=-1)
# KL Divergence loss for distillation
distill_loss = nn.functional.kl_div(student_soft, soft_targets, reduction='batchmean') * (temperature ** 2)
# Cross-entropy loss for hard labels
student_logit_reshape = torch.transpose(student_logits, 1, 2) # transpose to match the labels dimension
hard_loss = nn.CrossEntropyLoss()(student_logit_reshape, true_labels)
# Combine losses
loss = alpha * distill_loss + (1.0 - alpha) * hard_loss
return loss
# hyperparameters
batch_size = 32
lr = 1e-4
num_epochs = 30
temperature = 2.0
alpha = 0.5
# define optimizer
optimizer = optim.Adam(student_model.parameters(), lr=lr)
# create training data loader
dataloader = DataLoader(tokenized_data['train'], batch_size=batch_size, collate_fn=data_collator)
# create testing data loader
test_dataloader = DataLoader(tokenized_data['test'], batch_size=batch_size, collate_fn=data_collator)
untrained_student_accuracy, untrained_student_precision, untrained_student_recall, untrained_student_f1 = evaluate_model(student_model, test_dataloader, device)
print(f"Untrained Student (test) - Accuracy: {untrained_student_accuracy:.4f}, Precision: {untrained_student_precision:.4f}, Recall: {untrained_student_recall:.4f}, F1 Score: {untrained_student_f1:.4f}")
# put student model in train mode
student_model.train()
# train model
for epoch in range(num_epochs):
for batch in dataloader:
# Prepare inputs
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
# Disable gradient calculation for teacher model
with torch.no_grad():
teacher_outputs = teacher_model(input_ids, attention_mask=attention_mask)
teacher_logits = teacher_outputs.logits
# Forward pass through the student model
student_outputs = student_model(input_ids, attention_mask=attention_mask)
student_logits = student_outputs.logits
# Compute the distillation loss
loss = distillation_loss(student_logits, teacher_logits, labels, temperature, alpha)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1} completed with loss: {loss.item()}")
# Evaluate the teacher model
teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, test_dataloader, device)
print(f"Teacher (test) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
# Evaluate the student model
student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, test_dataloader, device)
print(f"Student (test) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
print("\n")
# put student model back into train mode
student_model.train()
#Compare the models
# create testing data loader
validation_dataloader = DataLoader(tokenized_data['test'], batch_size=8, collate_fn=data_collator)
# Evaluate the teacher model
teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, validation_dataloader, device)
print(f"Teacher (validation) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
# Evaluate the student model
student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, validation_dataloader, device)
print(f"Student (validation) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
st.write('Pushing model to huggingface')
# Push model to huggingface
hf_name = 'CarolXia' # your hf username or org name
mode_name = "pii-kd-deberta-v2"
model_id = hf_name + "/" + mode_name
student_model.push_to_hub(model_id, token=st.secrets["HUGGINGFACE_TOKEN"])
|