import torch from diffusers import DiffusionPipeline from diffusers.utils import export_to_video import shutil # Import shutil for cross-filesystem moves # Clear GPU memory torch.cuda.empty_cache() # Set memory allocation configuration os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True # Load the pipeline pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") pipe = pipe.to("cuda") # Generate video frames prompt = "Spiderman is surfing" video_frames = pipe(prompt, num_frames=75).frames[0] # Export video to a temporary path video_path = export_to_video(video_frames) # This returns the path to the saved video # Define the desired output path output_path = "/kaggle/working/spiderman_surfing.mp4" # Move the video to the desired output path using shutil.move shutil.move(video_path, output_path) print(f"Video saved at: {output_path}") # Utility function to convert bytes to gigabytes def bytes_to_giga_bytes(bytes): return bytes / 1024 / 1024 / 1024 # Print memory usage print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB")