TroglodyteDerivations commited on
Commit
628a434
·
verified ·
1 Parent(s): 8732886

Create run.py

Browse files
Files changed (1) hide show
  1. run.py +147 -0
run.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+
3
+ #Import Neural Network Model
4
+ from gan import DataLoader, DeepModel, tensor2im
5
+
6
+ #OpenCv Transform:
7
+ from opencv_transform.mask_to_maskref import create_maskref
8
+ from opencv_transform.maskdet_to_maskfin import create_maskfin
9
+ from opencv_transform.dress_to_correct import create_correct
10
+ from opencv_transform.nude_to_watermark import create_watermark
11
+
12
+ """
13
+ run.py
14
+ This script manage the entire transormation.
15
+ Transformation happens in 6 phases:
16
+ 0: dress -> correct [opencv] dress_to_correct
17
+ 1: correct -> mask: [GAN] correct_to_mask
18
+ 2: mask -> maskref [opencv] mask_to_maskref
19
+ 3: maskref -> maskdet [GAN] maskref_to_maskdet
20
+ 4: maskdet -> maskfin [opencv] maskdet_to_maskfin
21
+ 5: maskfin -> nude [GAN] maskfin_to_nude
22
+ 6: nude -> watermark [opencv] nude_to_watermark
23
+ """
24
+
25
+ phases = ["dress_to_correct", "correct_to_mask", "mask_to_maskref", "maskref_to_maskdet", "maskdet_to_maskfin", "maskfin_to_nude", "nude_to_watermark"]
26
+
27
+ class Options():
28
+
29
+ #Init options with default values
30
+ def __init__(self):
31
+
32
+ # experiment specifics
33
+ self.norm = 'batch' #instance normalization or batch normalization
34
+ self.use_dropout = False #use dropout for the generator
35
+ self.data_type = 32 #Supported data type i.e. 8, 16, 32 bit
36
+
37
+ # input/output sizes
38
+ self.batchSize = 1 #input batch size
39
+ self.input_nc = 3 # of input image channels
40
+ self.output_nc = 3 # of output image channels
41
+
42
+ # for setting inputs
43
+ self.serial_batches = True #if true, takes images in order to make batches, otherwise takes them randomly
44
+ self.nThreads = 1 ## threads for loading data (???)
45
+ self.max_dataset_size = 1 #Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.
46
+
47
+ # for generator
48
+ self.netG = 'global' #selects model to use for netG
49
+ self.ngf = 64 ## of gen filters in first conv layer
50
+ self.n_downsample_global = 4 #number of downsampling layers in netG
51
+ self.n_blocks_global = 9 #number of residual blocks in the global generator network
52
+ self.n_blocks_local = 0 #number of residual blocks in the local enhancer network
53
+ self.n_local_enhancers = 0 #number of local enhancers to use
54
+ self.niter_fix_global = 0 #number of epochs that we only train the outmost local enhancer
55
+
56
+ #Phase specific options
57
+ self.checkpoints_dir = ""
58
+ self.dataroot = ""
59
+
60
+ #Changes options accordlying to actual phase
61
+ def updateOptions(self, phase):
62
+
63
+ if phase == "correct_to_mask":
64
+ self.checkpoints_dir = "checkpoints/cm.lib"
65
+
66
+ elif phase == "maskref_to_maskdet":
67
+ self.checkpoints_dir = "checkpoints/mm.lib"
68
+
69
+ elif phase == "maskfin_to_nude":
70
+ self.checkpoints_dir = "checkpoints/mn.lib"
71
+
72
+ # process(cv_img, mode)
73
+ # return:
74
+ # watermark image
75
+ def process(cv_img):
76
+
77
+ #InMemory cv2 images:
78
+ dress = cv_img
79
+ correct = None
80
+ mask = None
81
+ maskref = None
82
+ maskfin = None
83
+ maskdet = None
84
+ nude = None
85
+ watermark = None
86
+
87
+ for index, phase in enumerate(phases):
88
+
89
+ print("Executing phase: " + phase)
90
+
91
+ #GAN phases:
92
+ if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude"):
93
+
94
+ #Load global option
95
+ opt = Options()
96
+
97
+ #Load custom phase options:
98
+ opt.updateOptions(phase)
99
+
100
+ #Load Data
101
+ if (phase == "correct_to_mask"):
102
+ data_loader = DataLoader(opt, correct)
103
+ elif (phase == "maskref_to_maskdet"):
104
+ data_loader = DataLoader(opt, maskref)
105
+ elif (phase == "maskfin_to_nude"):
106
+ data_loader = DataLoader(opt, maskfin)
107
+
108
+ dataset = data_loader.load_data()
109
+
110
+ #Create Model
111
+ model = DeepModel()
112
+ model.initialize(opt)
113
+
114
+ #Run for every image:
115
+ for i, data in enumerate(dataset):
116
+
117
+ generated = model.inference(data['label'], data['inst'])
118
+
119
+ im = tensor2im(generated.data[0])
120
+
121
+ #Save Data
122
+ if (phase == "correct_to_mask"):
123
+ mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
124
+
125
+ elif (phase == "maskref_to_maskdet"):
126
+ maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
127
+
128
+ elif (phase == "maskfin_to_nude"):
129
+ nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
130
+
131
+ #Correcting:
132
+ elif (phase == 'dress_to_correct'):
133
+ correct = create_correct(dress)
134
+
135
+ #mask_ref phase (opencv)
136
+ elif (phase == "mask_to_maskref"):
137
+ maskref = create_maskref(mask, correct)
138
+
139
+ #mask_fin phase (opencv)
140
+ elif (phase == "maskdet_to_maskfin"):
141
+ maskfin = create_maskfin(maskref, maskdet)
142
+
143
+ #nude_to_watermark phase (opencv)
144
+ elif (phase == "nude_to_watermark"):
145
+ watermark = create_watermark(nude)
146
+
147
+ return watermark