first commit
Browse files- .github/workflows/hf_sync.yml +20 -0
- README.md +10 -1
- app.py +57 -0
- requirements.txt +4 -0
- utils/__init__.py +0 -0
- utils/config.py +5 -0
- utils/haystack.py +89 -0
- utils/pubmed_fetcher.py +28 -0
- utils/ui.py +53 -0
.github/workflows/hf_sync.yml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches: [main]
|
5 |
+
|
6 |
+
# to run this workflow manually from the Actions tab
|
7 |
+
workflow_dispatch:
|
8 |
+
|
9 |
+
jobs:
|
10 |
+
sync-to-hub:
|
11 |
+
runs-on: ubuntu-latest
|
12 |
+
steps:
|
13 |
+
- uses: actions/checkout@v2
|
14 |
+
with:
|
15 |
+
fetch-depth: 0
|
16 |
+
lfs: true
|
17 |
+
- name: Push to hub
|
18 |
+
env:
|
19 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
+
run: git push --force https://Tuana:[email protected]/spaces/Tuana/pubmed-qa-mixtral-haystack main
|
README.md
CHANGED
@@ -1 +1,10 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Ask PubMed
|
3 |
+
emoji: π©π»ββοΈ
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.25.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
---
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from json import JSONDecodeError
|
3 |
+
import logging
|
4 |
+
from markdown import markdown
|
5 |
+
import requests
|
6 |
+
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
from utils.haystack import query, start_haystack
|
10 |
+
from utils.ui import reset_results, set_initial_state, sidebar
|
11 |
+
|
12 |
+
set_initial_state()
|
13 |
+
|
14 |
+
sidebar()
|
15 |
+
|
16 |
+
st.write("# π€ What have they been posting about lately on Mastodon?")
|
17 |
+
|
18 |
+
if st.session_state.get("H"):
|
19 |
+
pipeline = start_haystack(st.session_state.get("HUGGING_FACE_TOKEN"))
|
20 |
+
st.session_state["api_key_configured"] = True
|
21 |
+
search_bar, button = st.columns(2)
|
22 |
+
# Search bar
|
23 |
+
with search_bar:
|
24 |
+
question = st.text_input("Ask a question", on_change=reset_results)
|
25 |
+
|
26 |
+
with button:
|
27 |
+
st.write("")
|
28 |
+
st.write("")
|
29 |
+
run_pressed = st.button("Search posts (toots)")
|
30 |
+
else:
|
31 |
+
st.write("Please provide your OpenAI Key to start using the application")
|
32 |
+
st.write("If you are using a smaller screen, open the sidebar from the top left to provide your OpenAI Key π")
|
33 |
+
|
34 |
+
if st.session_state.get("api_key_configured"):
|
35 |
+
run_query = (
|
36 |
+
run_pressed or username != st.session_state.username
|
37 |
+
)
|
38 |
+
|
39 |
+
# Get results for query
|
40 |
+
if run_query and username:
|
41 |
+
reset_results()
|
42 |
+
st.session_state.username = username
|
43 |
+
with st.spinner("π"):
|
44 |
+
try:
|
45 |
+
st.session_state.result = query(username, pipeline)
|
46 |
+
except JSONDecodeError as je:
|
47 |
+
st.error(
|
48 |
+
"π An error occurred reading the results. Is the document store working?"
|
49 |
+
)
|
50 |
+
except Exception as e:
|
51 |
+
logging.exception(e)
|
52 |
+
st.error("π An error occurred during the request.")
|
53 |
+
|
54 |
+
if st.session_state.result:
|
55 |
+
voice = st.session_state.result
|
56 |
+
st.write(voice['results'][0])
|
57 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
haystack-ai==2.0.0b2
|
2 |
+
streamlit==1.25.0
|
3 |
+
pymed
|
4 |
+
markdown
|
utils/__init__.py
ADDED
File without changes
|
utils/config.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
load_dotenv()
|
5 |
+
HUGGING_FACE_TOKEN = os.getenv('HUGGING_FACE_TOKEN')
|
utils/haystack.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from haystack import Pipeline
|
3 |
+
from pubmed_fetcher import PubMedFetcher
|
4 |
+
from haystack.components.generators import HuggingFaceTGIGenerator
|
5 |
+
from haystack.components.builders.prompt_builder import PromptBuilder
|
6 |
+
|
7 |
+
# def start_keyword_pipeline(llm):
|
8 |
+
# keyword_prompt_template = """
|
9 |
+
# Your task is to convert the follwing question into 3 keywords that can be used to find relevant medical research papers on PubMed.
|
10 |
+
# Here is an examples:
|
11 |
+
# question: "What are the latest treatments for major depressive disorder?"
|
12 |
+
# keywords:
|
13 |
+
# Antidepressive Agents
|
14 |
+
# Depressive Disorder, Major
|
15 |
+
# Treatment-Resistant depression
|
16 |
+
# ---
|
17 |
+
# question: {{ question }}
|
18 |
+
# keywords:
|
19 |
+
# """
|
20 |
+
# keyword_prompt_builder = PromptBuilder(template=keyword_prompt_template)
|
21 |
+
|
22 |
+
# keyword_pipeline = Pipeline()
|
23 |
+
# keyword_pipeline.add_component("keyword_prompt_builder", keyword_prompt_builder)
|
24 |
+
# keyword_pipeline.add_component("keyword_llm", llm)
|
25 |
+
# return keyword_pipeline
|
26 |
+
|
27 |
+
# def start_qa_pipeline(llm):
|
28 |
+
# return qa_pipeline
|
29 |
+
|
30 |
+
def start_haystack(huggingface_token):
|
31 |
+
#Use this function to contruct a pipeline
|
32 |
+
llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1", token=huggingface_token)
|
33 |
+
llm.warm_up()
|
34 |
+
# start_keyword_pipeline(llm)
|
35 |
+
# start_qa_pipeline(llm)
|
36 |
+
keyword_prompt_template = """
|
37 |
+
Your task is to convert the follwing question into 3 keywords that can be used to find relevant medical research papers on PubMed.
|
38 |
+
Here is an examples:
|
39 |
+
question: "What are the latest treatments for major depressive disorder?"
|
40 |
+
keywords:
|
41 |
+
Antidepressive Agents
|
42 |
+
Depressive Disorder, Major
|
43 |
+
Treatment-Resistant depression
|
44 |
+
---
|
45 |
+
question: {{ question }}
|
46 |
+
keywords:
|
47 |
+
"""
|
48 |
+
prompt_template = """
|
49 |
+
Answer the question truthfully based on the given documents.
|
50 |
+
If the documents don't contain an answer, use your existing knowledge base.
|
51 |
+
|
52 |
+
q: {{ question }}
|
53 |
+
Articles:
|
54 |
+
{% for article in articles %}
|
55 |
+
{{article.content}}
|
56 |
+
keywords: {{article.meta['keywords']}}
|
57 |
+
title: {{article.meta['title']}}
|
58 |
+
{% endfor %}
|
59 |
+
|
60 |
+
"""
|
61 |
+
keyword_prompt_builder = PromptBuilder(template=keyword_prompt_template)
|
62 |
+
prompt_builder = PromptBuilder(template=prompt_template)
|
63 |
+
fetcher = PubMedFetcher()
|
64 |
+
|
65 |
+
pipe = Pipeline()
|
66 |
+
|
67 |
+
pipe.add_component("keyword_prompt_builder", keyword_prompt_builder)
|
68 |
+
pipe.add_component("keyword_llm", llm)
|
69 |
+
pipe.add_component("pubmed_fetcher", fetcher)
|
70 |
+
pipe.add_component("prompt_builder", prompt_builder)
|
71 |
+
pipe.add_component("llm", llm)
|
72 |
+
|
73 |
+
pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
|
74 |
+
pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
|
75 |
+
|
76 |
+
pipe.connect("pubmed_fetcher.articles", "prompt_builder.articles")
|
77 |
+
pipe.connect("prompt_builder.prompt", "llm.prompt")
|
78 |
+
return pipe
|
79 |
+
|
80 |
+
|
81 |
+
@st.cache_data(show_spinner=True)
|
82 |
+
def query(query, _pipeline):
|
83 |
+
try:
|
84 |
+
result = _pipeline.run(data={"keyword_prompt_builder":{"question":query},
|
85 |
+
"prompt_builder":{"question": query},
|
86 |
+
"llm":{"generation_kwargs": {"max_new_tokens": 500}}})
|
87 |
+
except Exception as e:
|
88 |
+
result = ["Please make sure you are providing a correct, public Mastodon account"]
|
89 |
+
return result
|
utils/pubmed_fetcher.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pymed import PubMed
|
2 |
+
from typing import List
|
3 |
+
from haystack import component
|
4 |
+
from haystack import Document
|
5 |
+
|
6 |
+
pubmed = PubMed(tool="Haystack2.0Prototype", email="[email protected]")
|
7 |
+
|
8 |
+
def documentize(article):
|
9 |
+
return Document(content=article.abstract, meta={'title': article.title, 'keywords': article.keywords})
|
10 |
+
|
11 |
+
@component
|
12 |
+
class PubMedFetcher():
|
13 |
+
|
14 |
+
@component.output_types(articles=List[Document])
|
15 |
+
def run(self, queries: list[str]):
|
16 |
+
cleaned_queries = queries[0].strip().split('\n')
|
17 |
+
|
18 |
+
articles = []
|
19 |
+
try:
|
20 |
+
for query in cleaned_queries:
|
21 |
+
response = pubmed.query(query, max_results = 1)
|
22 |
+
documents = [documentize(article) for article in response]
|
23 |
+
articles.extend(documents)
|
24 |
+
except Exception as e:
|
25 |
+
print(e)
|
26 |
+
print(f"Couldn't fetch articles for queries: {queries}" )
|
27 |
+
results = {'articles': articles}
|
28 |
+
return results
|
utils/ui.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
def set_state_if_absent(key, value):
|
5 |
+
if key not in st.session_state:
|
6 |
+
st.session_state[key] = value
|
7 |
+
|
8 |
+
def set_initial_state():
|
9 |
+
set_state_if_absent("question", "Ask a question")
|
10 |
+
set_state_if_absent("result", None)
|
11 |
+
set_state_if_absent("haystack_started", False)
|
12 |
+
|
13 |
+
def reset_results(*args):
|
14 |
+
st.session_state.result = None
|
15 |
+
|
16 |
+
def set_hf_api_key(api_key: str):
|
17 |
+
st.session_state["HUGGING_FACE_TOKEN"] = api_key
|
18 |
+
|
19 |
+
def sidebar():
|
20 |
+
with st.sidebar:
|
21 |
+
image = Image.open('logo/haystack-logo-colored.png')
|
22 |
+
|
23 |
+
st.markdown(
|
24 |
+
"## How to use\n"
|
25 |
+
"1. Enter your Hugging Face TGI API key below\n"
|
26 |
+
"2. Ask a question\n"
|
27 |
+
"3. Enjoy π€\n"
|
28 |
+
)
|
29 |
+
|
30 |
+
api_key_input = st.text_input(
|
31 |
+
"Hugging Face TGI API Key",
|
32 |
+
type="password",
|
33 |
+
placeholder="Paste your Hugging Face TGI token here",
|
34 |
+
value=st.session_state.get("HUGGING_FACE_TOKEN", ""),
|
35 |
+
)
|
36 |
+
|
37 |
+
if api_key_input:
|
38 |
+
set_hf_api_key(api_key_input)
|
39 |
+
|
40 |
+
st.markdown("---")
|
41 |
+
st.markdown(
|
42 |
+
"## How this works\n"
|
43 |
+
"This app was built with [Haystack](https://haystack.deepset.ai) using the"
|
44 |
+
" [`PromptNode`](https://docs.haystack.deepset.ai/docs/prompt_node) and custom [`PromptTemplate`](https://docs.haystack.deepset.ai/docs/prompt_node#templates).\n\n"
|
45 |
+
" The source code is also on [GitHub](https://github.com/TuanaCelik/should-i-follow)"
|
46 |
+
" with instructions to run locally.\n"
|
47 |
+
"You can see how the `PromptNode` was set up [here](https://github.com/TuanaCelik/should-i-follow/blob/main/utils/haystack.py)")
|
48 |
+
st.markdown("---")
|
49 |
+
st.markdown("Made by [tuanacelik](https://twitter.com/tuanacelik)")
|
50 |
+
st.markdown("---")
|
51 |
+
st.markdown("""Thanks to [mmz_001](https://twitter.com/mm_sasmitha)
|
52 |
+
for open sourcing [KnowledgeGPT](https://knowledgegpt.streamlit.app/) which helped me with this sidebar ππ½""")
|
53 |
+
st.image(image, width=250)
|