File size: 2,555 Bytes
142eb39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import sys

from urllib.parse import urlparse
import cv2
import numpy as np
import torch
from torch.hub import download_url_to_file, get_dir

LAMA_MODEL_URL = os.environ.get(
    "LAMA_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
)


def download_model(url=LAMA_MODEL_URL):
    parts = urlparse(url)
    hub_dir = get_dir()
    model_dir = os.path.join(hub_dir, "checkpoints")
    if not os.path.isdir(model_dir):
        os.makedirs(os.path.join(model_dir, "hub", "checkpoints"))
    filename = os.path.basename(parts.path)
    cached_file = os.path.join(model_dir, filename)
    if not os.path.exists(cached_file):
        sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
        hash_prefix = None
        download_url_to_file(url, cached_file, hash_prefix, progress=True)
    return cached_file


def ceil_modulo(x, mod):
    if x % mod == 0:
        return x
    return (x // mod + 1) * mod


def numpy_to_bytes(image_numpy: np.ndarray) -> bytes:
    data = cv2.imencode(".jpg", image_numpy)[1]
    image_bytes = data.tobytes()
    return image_bytes


def load_img(img_bytes, gray: bool = False):
    nparr = np.frombuffer(img_bytes, np.uint8)
    if gray:
        np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE)
    else:
        np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
        if len(np_img.shape) == 3 and np_img.shape[2] == 4:
            np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB)
        else:
            np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)

    return np_img


def norm_img(np_img):
    if len(np_img.shape) == 2:
        np_img = np_img[:, :, np.newaxis]
    np_img = np.transpose(np_img, (2, 0, 1))
    np_img = np_img.astype("float32") / 255
    return np_img


def resize_max_size(
    np_img, size_limit: int, interpolation=cv2.INTER_CUBIC
) -> np.ndarray:
    # Resize image's longer size to size_limit if longer size larger than size_limit
    h, w = np_img.shape[:2]
    if max(h, w) > size_limit:
        ratio = size_limit / max(h, w)
        new_w = int(w * ratio + 0.5)
        new_h = int(h * ratio + 0.5)
        return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation)
    else:
        return np_img


def pad_img_to_modulo(img, mod):
    channels, height, width = img.shape
    out_height = ceil_modulo(height, mod)
    out_width = ceil_modulo(width, mod)
    return np.pad(
        img,
        ((0, 0), (0, out_height - height), (0, out_width - width)),
        mode="symmetric",
    )