Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class ModelProcessor:
|
9 |
+
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"):
|
10 |
+
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
+
# Initialize the tokenizer
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
|
13 |
+
|
14 |
+
# Initialize and configure the model
|
15 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True
|
17 |
+
)
|
18 |
+
self.model.eval() # Set the model to evaluation mode
|
19 |
+
|
20 |
+
# Set padding token as end-of-sequence token
|
21 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
+
|
23 |
+
|
24 |
+
@torch.inference_mode()
|
25 |
+
def process_data_and_compute_statistics(self, prompt):
|
26 |
+
# Tokenize the prompt and move to the device
|
27 |
+
tokens = self.tokenizer(
|
28 |
+
prompt, return_tensors="pt", truncation=True, max_length=512
|
29 |
+
).to(self.model.device)
|
30 |
+
|
31 |
+
# Get the model outputs and logits
|
32 |
+
outputs = self.model(tokens["input_ids"])
|
33 |
+
logits = outputs.logits
|
34 |
+
|
35 |
+
# Shift right to align with logits' prediction position
|
36 |
+
shifted_labels = tokens["input_ids"][..., 1:].contiguous()
|
37 |
+
shifted_logits = logits[..., :-1, :].contiguous()
|
38 |
+
|
39 |
+
# Calculate entropy
|
40 |
+
shifted_probs = torch.softmax(shifted_logits, dim=-1)
|
41 |
+
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1)
|
42 |
+
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze()
|
43 |
+
|
44 |
+
# Flatten the logits and labels
|
45 |
+
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1))
|
46 |
+
labels_flat = shifted_labels.view(-1)
|
47 |
+
|
48 |
+
# Calculate the negative log-likelihood loss
|
49 |
+
probabilities_flat = torch.softmax(logits_flat, dim=-1)
|
50 |
+
true_class_probabilities = probabilities_flat.gather(
|
51 |
+
1, labels_flat.unsqueeze(1)
|
52 |
+
).squeeze(1)
|
53 |
+
nll = -torch.log(
|
54 |
+
true_class_probabilities.clamp(min=1e-9)
|
55 |
+
) # Clamp to prevent log(0)
|
56 |
+
|
57 |
+
ranks = (
|
58 |
+
shifted_logits.argsort(dim=-1, descending=True)
|
59 |
+
== shifted_labels.unsqueeze(-1)
|
60 |
+
).nonzero()[:, -1]
|
61 |
+
|
62 |
+
if entropy.clamp(max=4).median() < 2.0:
|
63 |
+
return 1
|
64 |
+
|
65 |
+
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0
|
66 |
+
|
67 |
+
|
68 |
+
processor = ModelProcessor()
|
69 |
+
|
70 |
+
@spaces.GPU(duration=180)
|
71 |
+
def detect(prompt):
|
72 |
+
prediction = processor.process_data_and_compute_statistics(prompt)
|
73 |
+
if prediction == 1:
|
74 |
+
return "The text is likely **generated** by a language model."
|
75 |
+
else:
|
76 |
+
return "The text is likely **not generated** by a language model."
|
77 |
+
|
78 |
+
|
79 |
+
with gr.Blocks(
|
80 |
+
css="""
|
81 |
+
.gradio-container {
|
82 |
+
max-width: 800px;
|
83 |
+
margin: 0 auto;
|
84 |
+
}
|
85 |
+
.gr-box {
|
86 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
87 |
+
padding: 20px;
|
88 |
+
border-radius: 4px;
|
89 |
+
}
|
90 |
+
.gr-button {
|
91 |
+
background-color: #007bff;
|
92 |
+
color: white; padding: 10px 20px;
|
93 |
+
border-radius: 4px;
|
94 |
+
}
|
95 |
+
.gr-button:hover {
|
96 |
+
background-color: }
|
97 |
+
.hyperlinks a {
|
98 |
+
margin-right: 10px;
|
99 |
+
}
|
100 |
+
"""
|
101 |
+
) as demo:
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column(scale=3):
|
104 |
+
gr.Markdown("# ENTELL Model Detection - ChatGPTBots.net")
|
105 |
+
with gr.Column(scale=1):
|
106 |
+
gr.HTML(
|
107 |
+
"""
|
108 |
+
""",
|
109 |
+
elem_classes="hyperlinks",
|
110 |
+
)
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
prompt = gr.Textbox(
|
114 |
+
lines=8,
|
115 |
+
placeholder="Type your prompt here...",
|
116 |
+
label="Prompt",
|
117 |
+
)
|
118 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
119 |
+
output = gr.Markdown()
|
120 |
+
|
121 |
+
submit_btn.click(fn=detect, inputs=prompt, outputs=output)
|
122 |
+
|
123 |
+
demo.launch()
|