UmairSyed commited on
Commit
a911d62
·
1 Parent(s): d33368b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -56
app.py CHANGED
@@ -5,8 +5,7 @@ import requests, validators
5
  import torch
6
  import pathlib
7
  from PIL import Image
8
- from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
9
-
10
  import os
11
 
12
  # colors for visualization
@@ -52,23 +51,20 @@ def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
52
  plt.axis("off")
53
  return fig2img(plt.gcf())
54
 
55
- def detect_objects(model_name,url_input,image_input,threshold):
56
-
 
57
  #Extract model and feature extractor
58
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
59
 
60
- if 'detr' in model_name:
61
-
62
- model = DetrForObjectDetection.from_pretrained(model_name)
63
-
64
- elif 'yolos' in model_name:
65
-
66
- model = YolosForObjectDetection.from_pretrained(model_name)
67
-
68
- if validators.url(url_input):
69
- image = Image.open(requests.get(url_input, stream=True).raw)
70
 
71
- elif image_input:
 
 
 
 
72
  image = image_input
73
 
74
  #Make prediction
@@ -86,68 +82,50 @@ def set_example_url(example: list) -> dict:
86
  return gr.Textbox.update(value=example[0])
87
 
88
 
89
- title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
90
-
91
- description = """
92
- Links to HuggingFace Models:
93
- - [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
94
- - [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
95
- - [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
96
- - [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
97
- """
98
-
99
- models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny']
100
- urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
101
-
102
- twitter_link = """
103
- [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
104
- """
105
-
106
  css = '''
107
  h1#title {
108
  text-align: center;
109
  }
110
  '''
111
- demo = gr.Blocks(css=css)
112
 
113
  with demo:
114
- gr.Markdown(title)
115
- gr.Markdown(description)
116
- gr.Markdown(twitter_link)
117
  options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
118
  slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
119
 
120
  with gr.Tabs():
121
  with gr.TabItem('Image URL'):
122
- with gr.Row():
123
- url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
124
- img_output_from_url = gr.Image(shape=(650,650))
125
-
126
- with gr.Row():
127
- example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
128
 
129
- url_but = gr.Button('Detect')
130
-
 
 
 
131
  with gr.TabItem('Image Upload'):
132
- with gr.Row():
133
- img_input = gr.Image(type='pil')
134
- img_output_from_upload= gr.Image(shape=(650,650))
135
 
136
- with gr.Row():
137
- example_images = gr.Dataset(components=[img_input],
138
- samples=[[path.as_posix()]
139
- for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
140
 
141
- img_but = gr.Button('Detect')
142
 
143
-
144
- url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
145
- img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
146
  example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
147
  example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
148
 
149
 
150
- gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")
151
 
152
 
153
  demo.launch(enable_queue=True)
 
5
  import torch
6
  import pathlib
7
  from PIL import Image
8
+ from transformers import AutoFeatureExtractor, DetrForObjectDetection
 
9
  import os
10
 
11
  # colors for visualization
 
51
  plt.axis("off")
52
  return fig2img(plt.gcf())
53
 
54
+ def detect_objects(model_name,image_input,threshold):
55
+ print(type(image_input))
56
+
57
  #Extract model and feature extractor
58
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
59
 
60
+ if 'detr' in model_name:
61
+ model = DetrForObjectDetection.from_pretrained(model_name)
 
 
 
 
 
 
 
 
62
 
63
+ if image_input:
64
+ if isinstance(image_input,str):
65
+ if validators.url(image_input):
66
+ image = Image.open(requests.get(image_input, stream=True).raw)
67
+ else:
68
  image = image_input
69
 
70
  #Make prediction
 
82
  return gr.Textbox.update(value=example[0])
83
 
84
 
85
+ models = ["facebook/detr-resnet-50","facebook/detr-resnet-101"]
86
+ #examples = ['1daaadc1e83fcecc7bfa920ed2773653.jpeg']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  css = '''
88
  h1#title {
89
  text-align: center;
90
  }
91
  '''
92
+ demo = gr.Blocks()
93
 
94
  with demo:
95
+ #r.Markdown(title)
96
+ #gr.Markdown(description)
 
97
  options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
98
  slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
99
 
100
  with gr.Tabs():
101
  with gr.TabItem('Image URL'):
102
+ with gr.Row():
103
+ url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
104
+ img_output_from_url = gr.Image(shape=(650,650))
 
 
 
105
 
106
+ with gr.Row():
107
+ example_url = gr.Dataset(components=[url_input],samples=[['https://miro.medium.com/max/960/1*ACc03086R6H_LyLydy8Z4g.jpeg'],['https://www.exposit.com/wp-content/uploads/2021/12/Blog_cover-52-scaled.jpeg']])
108
+
109
+ url_but = gr.Button('Detect')
110
+
111
  with gr.TabItem('Image Upload'):
112
+ with gr.Row():
113
+ img_input = gr.Image(type='pil')
114
+ img_output_from_upload= gr.Image(shape=(650,650))
115
 
116
+ with gr.Row():
117
+ example_images = gr.Dataset(components=[img_input],
118
+ samples=[["airport.jpg"],['football-match.jpg']])
 
119
 
120
+ img_but = gr.Button('Detect')
121
 
122
+ url_but.click(detect_objects,inputs=[options,url_input,slider_input],outputs=img_output_from_url,queue=True)
123
+ img_but.click(detect_objects,inputs=[options,img_input,slider_input],outputs=img_output_from_upload,queue=True)
 
124
  example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
125
  example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
126
 
127
 
128
+ #gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")
129
 
130
 
131
  demo.launch(enable_queue=True)