File size: 2,432 Bytes
3cb2a3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
from ocr_cpu import extract_text_got, clean_text  # Import OCR and text cleaning functions
import json

# --- UI Styling ---
st.set_page_config(page_title="DualTextOCRFusion", layout="centered", page_icon="πŸ”")

st.markdown(
    """
    <style>
    .reportview-container {
        background: #f4f4f4;
    }
    .sidebar .sidebar-content {
        background: #e0e0e0;
    }
    h1 {
        color: #007BFF;
    }
    .upload-btn {
        background-color: #007BFF;
        color: white;
        padding: 10px;
        border-radius: 5px;
        text-align: center;
    }
    </style>
    """, 
    unsafe_allow_html=True
)

# --- Title ---
st.title("πŸ” DualTextOCRFusion")
st.write("Upload an image with **Hindi**, **English**, or **Hinglish** text to extract and clean text for keyword search.")

# --- Image Upload Section ---
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)

    # Extract text from the image using GOT OCR function
    with st.spinner("Extracting text from the image..."):
        try:
            extracted_text = extract_text_got(uploaded_file)  # Use GOT OCR to extract text
            if not extracted_text.strip():
                st.warning("No text extracted from the image.")
            else:
                # Clean the extracted text to remove extra spaces
                cleaned_text = clean_text(extracted_text)
                st.success("Text extraction and cleaning successful.")
        except Exception as e:
            st.error(f"Error during text extraction: {str(e)}")
            extracted_text = cleaned_text = ""

    # Display cleaned text
    st.subheader("Cleaned Extracted Text")
    st.text_area("Cleaned Text", cleaned_text, height=250)

    # Save cleaned text for search
    if cleaned_text:
        with open("extracted_text.json", "w") as json_file:
            json.dump({"text": cleaned_text}, json_file)

        # --- Keyword Search ---
        st.subheader("Search for Keywords")
        keyword = st.text_input("Enter a keyword to search in the cleaned text")

        if keyword:
            if keyword.lower() in cleaned_text.lower():
                st.success(f"Keyword **'{keyword}'** found in the text!")
            else:
                st.error(f"Keyword **'{keyword}'** not found.")