|
|
|
|
|
import os |
|
import string |
|
import gradio as gr |
|
import PIL.Image |
|
import spaces |
|
import torch |
|
from transformers import AutoProcessor, BitsAndBytesConfig, Blip2ForConditionalGeneration |
|
|
|
|
|
CUSTOM_CSS = """ |
|
.container { |
|
max-width: 1000px; |
|
margin: auto; |
|
padding: 2rem; |
|
background: linear-gradient(to bottom right, #ffffff, #f8f9fa); |
|
border-radius: 15px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
} |
|
|
|
.title { |
|
font-size: 2.5rem; |
|
color: #1a73e8; |
|
text-align: center; |
|
margin-bottom: 2rem; |
|
font-weight: bold; |
|
} |
|
|
|
.tab-nav { |
|
background: #f8f9fa; |
|
border-radius: 10px; |
|
padding: 0.5rem; |
|
margin-bottom: 1rem; |
|
} |
|
|
|
.input-box { |
|
border: 2px solid #e0e0e0; |
|
border-radius: 8px; |
|
transition: all 0.3s ease; |
|
} |
|
|
|
.input-box:focus { |
|
border-color: #1a73e8; |
|
box-shadow: 0 0 0 2px rgba(26, 115, 232, 0.2); |
|
} |
|
|
|
.button-primary { |
|
background: #1a73e8; |
|
color: white; |
|
padding: 0.75rem 1.5rem; |
|
border-radius: 8px; |
|
border: none; |
|
cursor: pointer; |
|
transition: all 0.3s ease; |
|
} |
|
|
|
.button-primary:hover { |
|
background: #1557b0; |
|
transform: translateY(-1px); |
|
} |
|
|
|
.button-secondary { |
|
background: #f8f9fa; |
|
color: #1a73e8; |
|
border: 1px solid #1a73e8; |
|
padding: 0.75rem 1.5rem; |
|
border-radius: 8px; |
|
cursor: pointer; |
|
transition: all 0.3s ease; |
|
} |
|
|
|
.button-secondary:hover { |
|
background: #e8f0fe; |
|
} |
|
|
|
.output-box { |
|
background: #ffffff; |
|
border-radius: 8px; |
|
padding: 1rem; |
|
margin-top: 1rem; |
|
border: 1px solid #e0e0e0; |
|
} |
|
|
|
.chatbot-message { |
|
padding: 1rem; |
|
margin: 0.5rem 0; |
|
border-radius: 8px; |
|
background: #f8f9fa; |
|
} |
|
|
|
.advanced-settings { |
|
background: #ffffff; |
|
border-radius: 8px; |
|
padding: 1rem; |
|
margin-top: 1rem; |
|
} |
|
|
|
.slider-container { |
|
padding: 0.5rem; |
|
background: #f8f9fa; |
|
border-radius: 6px; |
|
} |
|
|
|
.examples-container { |
|
margin-top: 2rem; |
|
padding: 1rem; |
|
background: #ffffff; |
|
border-radius: 8px; |
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05); |
|
} |
|
""" |
|
|
|
DESCRIPTION = """ |
|
<div class="title"> |
|
๐ผ๏ธ BLIP-2 Visual Intelligence System |
|
</div> |
|
<p style='text-align: center; color: #666;'> |
|
Advanced AI system for image understanding and natural conversation |
|
</p> |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p style='color: #dc3545;'>Running on CPU ๐ฅถ This demo requires GPU to function properly.</p>" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
MODEL_ID_OPT_2_7B = "Salesforce/blip2-opt-2.7b" |
|
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b" |
|
MODEL_ID_FLAN_T5_XL = "Salesforce/blip2-flan-t5-xl" |
|
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl" |
|
MODEL_ID = os.getenv("MODEL_ID", MODEL_ID_FLAN_T5_XXL) |
|
|
|
if MODEL_ID not in [MODEL_ID_OPT_2_7B, MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XL, MODEL_ID_FLAN_T5_XXL]: |
|
error_message = f"Invalid MODEL_ID: {MODEL_ID}" |
|
raise ValueError(error_message) |
|
|
|
if torch.cuda.is_available(): |
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
model = Blip2ForConditionalGeneration.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True) |
|
) |
|
|
|
@spaces.GPU |
|
def generate_caption( |
|
image: PIL.Image.Image, |
|
decoding_method: str = "Nucleus sampling", |
|
temperature: float = 1.0, |
|
length_penalty: float = 1.0, |
|
repetition_penalty: float = 1.5, |
|
max_length: int = 50, |
|
min_length: int = 1, |
|
num_beams: int = 5, |
|
top_p: float = 0.9, |
|
) -> str: |
|
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) |
|
generated_ids = model.generate( |
|
pixel_values=inputs.pixel_values, |
|
do_sample=decoding_method == "Nucleus sampling", |
|
temperature=temperature, |
|
length_penalty=length_penalty, |
|
repetition_penalty=repetition_penalty, |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=num_beams, |
|
top_p=top_p, |
|
) |
|
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
@spaces.GPU |
|
def answer_question( |
|
image: PIL.Image.Image, |
|
prompt: str, |
|
decoding_method: str = "Nucleus sampling", |
|
temperature: float = 1.0, |
|
length_penalty: float = 1.0, |
|
repetition_penalty: float = 1.5, |
|
max_length: int = 50, |
|
min_length: int = 1, |
|
num_beams: int = 5, |
|
top_p: float = 0.9, |
|
) -> str: |
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16) |
|
generated_ids = model.generate( |
|
**inputs, |
|
do_sample=decoding_method == "Nucleus sampling", |
|
temperature=temperature, |
|
length_penalty=length_penalty, |
|
repetition_penalty=repetition_penalty, |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=num_beams, |
|
top_p=top_p, |
|
) |
|
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
def postprocess_output(output: str) -> str: |
|
if output and output[-1] not in string.punctuation: |
|
output += "." |
|
return output |
|
|
|
def chat( |
|
image: PIL.Image.Image, |
|
text: str, |
|
decoding_method: str = "Nucleus sampling", |
|
temperature: float = 1.0, |
|
length_penalty: float = 1.0, |
|
repetition_penalty: float = 1.5, |
|
max_length: int = 50, |
|
min_length: int = 1, |
|
num_beams: int = 5, |
|
top_p: float = 0.9, |
|
history_orig: list[str] | None = None, |
|
history_qa: list[str] | None = None, |
|
) -> tuple[list[tuple[str, str]], list[str], list[str]]: |
|
history_orig = history_orig or [] |
|
history_qa = history_qa or [] |
|
history_orig.append(text) |
|
text_qa = f"Question: {text} Answer:" |
|
history_qa.append(text_qa) |
|
prompt = " ".join(history_qa) |
|
|
|
output = answer_question( |
|
image=image, |
|
prompt=prompt, |
|
decoding_method=decoding_method, |
|
temperature=temperature, |
|
length_penalty=length_penalty, |
|
repetition_penalty=repetition_penalty, |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=num_beams, |
|
top_p=top_p, |
|
) |
|
output = postprocess_output(output) |
|
history_orig.append(output) |
|
history_qa.append(output) |
|
|
|
chat_val = list(zip(history_orig[0::2], history_orig[1::2], strict=False)) |
|
return chat_val, history_orig, history_qa |
|
|
|
chat.zerogpu = True |
|
|
|
examples = [ |
|
[ |
|
"images/house.png", |
|
"How could someone get out of the house?", |
|
], |
|
[ |
|
"images/flower.jpg", |
|
"What is this flower and where is it's origin?", |
|
], |
|
[ |
|
"images/pizza.jpg", |
|
"What are steps to cook it?", |
|
], |
|
[ |
|
"images/sunset.jpg", |
|
"Here is a romantic message going along the photo:", |
|
], |
|
[ |
|
"images/forbidden_city.webp", |
|
"In what dynasties was this place built?", |
|
], |
|
] |
|
|
|
with gr.Blocks(css=CUSTOM_CSS) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Group(elem_classes="container"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image = gr.Image( |
|
type="pil", |
|
label="Upload Image", |
|
elem_classes="input-box" |
|
) |
|
|
|
with gr.Column(scale=2): |
|
with gr.Tabs(elem_classes="tab-nav"): |
|
with gr.Tab(label="โจ Image Captioning"): |
|
caption_button = gr.Button( |
|
"Generate Caption", |
|
elem_classes="button-primary" |
|
) |
|
caption_output = gr.Textbox( |
|
label="Generated Caption", |
|
elem_classes="output-box" |
|
) |
|
|
|
with gr.Tab(label="๐ญ Visual Q&A"): |
|
chatbot = gr.Chatbot( |
|
elem_classes="chatbot-message" |
|
) |
|
history_orig = gr.State(value=[]) |
|
history_qa = gr.State(value=[]) |
|
vqa_input = gr.Textbox( |
|
placeholder="Ask me anything about the image...", |
|
elem_classes="input-box" |
|
) |
|
|
|
with gr.Row(): |
|
clear_button = gr.Button( |
|
"Clear Chat", |
|
elem_classes="button-secondary" |
|
) |
|
submit_button = gr.Button( |
|
"Send Message", |
|
elem_classes="button-primary" |
|
) |
|
|
|
with gr.Accordion("๐ ๏ธ Advanced Settings", open=False, elem_classes="advanced-settings"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
text_decoding_method = gr.Radio( |
|
choices=["Beam search", "Nucleus sampling"], |
|
value="Nucleus sampling", |
|
label="Decoding Method" |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=1.0, |
|
label="Temperature", |
|
info="Used with nucleus sampling", |
|
elem_classes="slider-container" |
|
) |
|
length_penalty = gr.Slider( |
|
minimum=-1.0, |
|
maximum=2.0, |
|
value=1.0, |
|
label="Length Penalty", |
|
info="Set to larger for longer sequence", |
|
elem_classes="slider-container" |
|
) |
|
with gr.Column(): |
|
repetition_penalty = gr.Slider( |
|
minimum=1.0, |
|
maximum=5.0, |
|
value=1.5, |
|
label="Repetition Penalty", |
|
info="Larger value prevents repetition", |
|
elem_classes="slider-container" |
|
) |
|
max_length = gr.Slider( |
|
minimum=20, |
|
maximum=512, |
|
value=50, |
|
label="Max Length", |
|
elem_classes="slider-container" |
|
) |
|
min_length = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
value=1, |
|
label="Min Length", |
|
elem_classes="slider-container" |
|
) |
|
num_beams = gr.Slider( |
|
minimum=1, |
|
maximum=10, |
|
value=5, |
|
label="Number of Beams", |
|
elem_classes="slider-container" |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=0.9, |
|
label="Top P", |
|
info="Used with nucleus sampling", |
|
elem_classes="slider-container" |
|
) |
|
|
|
with gr.Group(elem_classes="examples-container"): |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[image, vqa_input], |
|
label="Try these examples" |
|
) |
|
|
|
|
|
caption_button.click( |
|
fn=generate_caption, |
|
inputs=[ |
|
image, |
|
text_decoding_method, |
|
temperature, |
|
length_penalty, |
|
repetition_penalty, |
|
max_length, |
|
min_length, |
|
num_beams, |
|
top_p, |
|
], |
|
outputs=caption_output, |
|
api_name="caption" |
|
) |
|
|
|
chat_inputs = [ |
|
image, |
|
vqa_input, |
|
text_decoding_method, |
|
temperature, |
|
length_penalty, |
|
repetition_penalty, |
|
max_length, |
|
min_length, |
|
num_beams, |
|
top_p, |
|
history_orig, |
|
history_qa, |
|
] |
|
chat_outputs = [ |
|
chatbot, |
|
history_orig, |
|
history_qa, |
|
] |
|
|
|
vqa_input.submit( |
|
fn=chat, |
|
inputs=chat_inputs, |
|
outputs=chat_outputs |
|
).success( |
|
fn=lambda: "", |
|
outputs=vqa_input, |
|
queue=False, |
|
api_name=False |
|
) |
|
|
|
submit_button.click( |
|
fn=chat, |
|
inputs=chat_inputs, |
|
outputs=chat_outputs, |
|
api_name="chat" |
|
).success( |
|
fn=lambda: "", |
|
outputs=vqa_input, |
|
queue=False, |
|
api_name=False |
|
) |
|
|
|
clear_button.click( |
|
fn=lambda: ("", [], [], []), |
|
inputs=None, |
|
outputs=[ |
|
vqa_input, |
|
chatbot, |
|
history_orig, |
|
history_qa, |
|
], |
|
queue=False, |
|
api_name="clear" |
|
) |
|
|
|
image.change( |
|
fn=lambda: ("", [], [], []), |
|
inputs=None, |
|
outputs=[ |
|
caption_output, |
|
chatbot, |
|
history_orig, |
|
history_qa, |
|
], |
|
queue=False |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=10).launch() |