File size: 1,851 Bytes
b3dd839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List
import torch

app = FastAPI(title="Language Model API")

# Model configuration
CHECKPOINT = "HuggingFaceTB/SmolLM2-135M-Instruct"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize model and tokenizer
try:
    tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
    model = AutoModelForCausalLM.from_pretrained(CHECKPOINT).to(DEVICE)
except Exception as e:
    raise RuntimeError(f"Failed to load model: {str(e)}")

class ChatMessage(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    messages: List[ChatMessage]
    max_new_tokens: int = 50
    temperature: float = 0.2
    top_p: float = 0.9

@app.post("/generate")
async def generate_response(request: ChatRequest):
    try:
        # Convert messages to the format expected by the model
        messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
        
        # Prepare input
        input_text = tokenizer.apply_chat_template(messages, tokenize=False)
        inputs = tokenizer.encode(input_text, return_tensors="pt").to(DEVICE)
        
        # Generate response
        outputs = model.generate(
            inputs,
            max_new_tokens=request.max_new_tokens,
            temperature=request.temperature,
            top_p=request.top_p,
            do_sample=True
        )
        
        # Decode and return response
        response_text = tokenizer.decode(outputs[0])
        
        return {
            "generated_text": response_text
        }
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)