import gradio as gr import cv2 import numpy as np # Function to compare two images and highlight differences def compare_images(mockup, ui_screenshot, check_text, check_color, check_spacing): # Convert images to numpy arrays mockup_array = np.array(mockup) ui_screenshot_array = np.array(ui_screenshot) # Resize images to the same dimensions if mockup_array.shape != ui_screenshot_array.shape: height, width = max(mockup_array.shape[0], ui_screenshot_array.shape[0]), max(mockup_array.shape[1], ui_screenshot_array.shape[1]) mockup_array = cv2.resize(mockup_array, (width, height)) ui_screenshot_array = cv2.resize(ui_screenshot_array, (width, height)) # Convert images to grayscale mockup_gray = cv2.cvtColor(mockup_array, cv2.COLOR_RGB2GRAY) ui_screenshot_gray = cv2.cvtColor(ui_screenshot_array, cv2.COLOR_RGB2GRAY) # Compute the absolute difference between the two images difference = cv2.absdiff(mockup_gray, ui_screenshot_gray) # Threshold the difference image to get a binary image _, thresh = cv2.threshold(difference, 30, 255, cv2.THRESH_BINARY) # Find contours of the differences contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Create a copy of the original image to draw the differences highlighted_image = mockup_array.copy() # Draw red circles around the differences for contour in contours: if cv2.contourArea(contour) > 100: # Filter out small differences x, y, w, h = cv2.boundingRect(contour) cv2.circle(highlighted_image, (x + w // 2, y + h // 2), 10, (255, 0, 0), -1) # Convert the highlighted image back to RGB for display highlighted_image_rgb = cv2.cvtColor(highlighted_image, cv2.COLOR_BGR2RGB) # Generate a report based on the selected options report = "Comparison Report:\n" if check_text: report += "Text Differences: This feature requires advanced text recognition.\n" if check_color: report += "Color Differences: This feature requires color analysis.\n" if check_spacing: report += "Spacing Differences: This feature requires layout analysis.\n" return highlighted_image_rgb, report # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("## Welcome to the UI Difference Spotter!") gr.Markdown("Please upload the design mockup and the developed UI screenshot you want to compare.") with gr.Row(): mockup_upload = gr.Image(label="Upload Design Mockup", type="pil") ui_screenshot_upload = gr.Image(label="Upload Developed UI Screenshot", type="pil") with gr.Row(): check_text = gr.Checkbox(label="Check Text Differences", value=True) check_color = gr.Checkbox(label="Check Color Differences", value=True) check_spacing = gr.Checkbox(label="Check Spacing Differences", value=True) with gr.Row(): compare_button = gr.Button("Compare Images") with gr.Row(): highlighted_image = gr.Image(label="Highlighted Differences") report_output = gr.Textbox(label="Comparison Details", interactive=False) # Define the event listener for the compare button compare_button.click( fn=compare_images, inputs=[mockup_upload, ui_screenshot_upload, check_text, check_color, check_spacing], outputs=[highlighted_image, report_output] ) # Launch the Gradio app if __name__ == "__main__": demo.launch(show_error=True)