Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -10,17 +10,15 @@ Original file is located at
|
|
10 |
import gradio as gr
|
11 |
import torch
|
12 |
import torch.nn.functional as F
|
13 |
-
from transformers import
|
14 |
-
from safetensors.torch import load_file
|
15 |
import os
|
16 |
|
17 |
def load_model():
|
18 |
-
#
|
19 |
model_name = "indobenchmark/indobert-lite-large-p2"
|
20 |
-
model =
|
21 |
model_name,
|
22 |
num_labels=3,
|
23 |
-
# Add these parameters to avoid random initialization warnings
|
24 |
local_files_only=False,
|
25 |
ignore_mismatched_sizes=True
|
26 |
)
|
@@ -30,7 +28,7 @@ def load_model():
|
|
30 |
# Option 1: Load from local safetensors file
|
31 |
local_model_path = "model.safetensors"
|
32 |
if os.path.exists(local_model_path):
|
33 |
-
weights =
|
34 |
model.load_state_dict(weights)
|
35 |
else:
|
36 |
print("Warning: No local model weights found. Using pre-trained weights.")
|
@@ -45,7 +43,7 @@ def load_model():
|
|
45 |
model = load_model()
|
46 |
|
47 |
# Load the tokenizer
|
48 |
-
tokenizer =
|
49 |
|
50 |
def predict_stress_with_accuracy(text_input):
|
51 |
if not text_input.strip():
|
|
|
10 |
import gradio as gr
|
11 |
import torch
|
12 |
import torch.nn.functional as F
|
13 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
|
|
14 |
import os
|
15 |
|
16 |
def load_model():
|
17 |
+
# Use BertForSequenceClassification instead of AutoModelForSequenceClassification
|
18 |
model_name = "indobenchmark/indobert-lite-large-p2"
|
19 |
+
model = BertForSequenceClassification.from_pretrained(
|
20 |
model_name,
|
21 |
num_labels=3,
|
|
|
22 |
local_files_only=False,
|
23 |
ignore_mismatched_sizes=True
|
24 |
)
|
|
|
28 |
# Option 1: Load from local safetensors file
|
29 |
local_model_path = "model.safetensors"
|
30 |
if os.path.exists(local_model_path):
|
31 |
+
weights = torch.load(local_model_path)
|
32 |
model.load_state_dict(weights)
|
33 |
else:
|
34 |
print("Warning: No local model weights found. Using pre-trained weights.")
|
|
|
43 |
model = load_model()
|
44 |
|
45 |
# Load the tokenizer
|
46 |
+
tokenizer = BertTokenizer.from_pretrained('indobenchmark/indobert-lite-large-p2')
|
47 |
|
48 |
def predict_stress_with_accuracy(text_input):
|
49 |
if not text_input.strip():
|