Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""GradioWebsite.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/14D-sxTs35_Vc9__q6maqZ6cb8OqfhTqt
|
8 |
+
"""
|
9 |
+
|
10 |
+
from google.colab import drive
|
11 |
+
drive.mount('/content/drive')
|
12 |
+
|
13 |
+
!pip install huggingface_hub
|
14 |
+
|
15 |
+
!pip install gradio
|
16 |
+
import gradio as gr
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from transformers import AutoTokenizer
|
20 |
+
from safetensors.torch import load_file
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import numpy as np
|
23 |
+
import os
|
24 |
+
|
25 |
+
!pip install safetensors transformers torch gradio
|
26 |
+
|
27 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
28 |
+
from safetensors.torch import load_file
|
29 |
+
import torch
|
30 |
+
|
31 |
+
# Define your model path
|
32 |
+
model_path = "/content/drive/MyDrive/model_3500_data_pred_label_fold_5_dari_5(indoBERT_lite_large)/model.safetensors"
|
33 |
+
|
34 |
+
# Load the model architecture (BERT-like, IndoBERT, etc.)
|
35 |
+
model_name = "indobert-lite-large-p2" # Replace with the correct model name for your case
|
36 |
+
model = AutoModelForSequenceClassification.from_pretrained('indobenchmark/indobert-lite-large-p2', num_labels=3)
|
37 |
+
|
38 |
+
# Load the model weights using safetensors
|
39 |
+
weights = load_file(model_path)
|
40 |
+
|
41 |
+
# Load the weights into the model
|
42 |
+
model.load_state_dict(weights)
|
43 |
+
|
44 |
+
# Set the model to evaluation mode
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
# Verify the model loaded correctly
|
48 |
+
print(model)
|
49 |
+
|
50 |
+
from transformers import AutoTokenizer
|
51 |
+
from transformers import BertForSequenceClassification, BertTokenizer, AutoModelForSequenceClassification
|
52 |
+
|
53 |
+
# Load the tokenizer
|
54 |
+
tokenizer = BertTokenizer.from_pretrained('indobenchmark/indobert-lite-large-p2')
|
55 |
+
|
56 |
+
import torch
|
57 |
+
import torch.nn.functional as F
|
58 |
+
import gradio as gr
|
59 |
+
|
60 |
+
def predict_stress_with_accuracy(text_input):
|
61 |
+
if not text_input.strip():
|
62 |
+
return None, None, None, None
|
63 |
+
|
64 |
+
# Tokenize the input text
|
65 |
+
inputs = tokenizer(text_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
66 |
+
|
67 |
+
# Get the model's output
|
68 |
+
with torch.no_grad():
|
69 |
+
output = model(**inputs)
|
70 |
+
|
71 |
+
# Apply softmax to get probabilities
|
72 |
+
probabilities = F.softmax(output.logits, dim=1)
|
73 |
+
|
74 |
+
# Get predictions for all classes
|
75 |
+
probs = probabilities[0].tolist()
|
76 |
+
confidence_scores = [round(p * 100, 1) for p in probs]
|
77 |
+
|
78 |
+
# Get main prediction
|
79 |
+
predicted_class = torch.argmax(probabilities, dim=1).item()
|
80 |
+
main_confidence = confidence_scores[predicted_class]
|
81 |
+
|
82 |
+
# Map the predicted class to stress level
|
83 |
+
stress_levels = {0: "Neutral", 1: "Mild Stress", 2: "Very Stress"}
|
84 |
+
prediction = stress_levels[predicted_class]
|
85 |
+
|
86 |
+
# Generate HTML for the main result
|
87 |
+
result_html = f"""
|
88 |
+
<div class="result-card">
|
89 |
+
<div class="prediction-text">{prediction}</div>
|
90 |
+
<div class="confidence-bar-container">
|
91 |
+
<div class="confidence-bar" style="width: {main_confidence}%"></div>
|
92 |
+
<span class="confidence-text">{main_confidence}% Confident</span>
|
93 |
+
</div>
|
94 |
+
</div>
|
95 |
+
"""
|
96 |
+
|
97 |
+
# Generate HTML for detailed analysis
|
98 |
+
detailed_html = f"""
|
99 |
+
<div class="detailed-analysis">
|
100 |
+
<div class="analysis-title">Detailed Analysis</div>
|
101 |
+
<div class="analysis-bars">
|
102 |
+
<div class="analysis-bar">
|
103 |
+
<div class="bar-label">Neutral</div>
|
104 |
+
<div class="bar-container">
|
105 |
+
<div class="bar neutral" style="width: {confidence_scores[0]}%"></div>
|
106 |
+
<span class="bar-value">{confidence_scores[0]}%</span>
|
107 |
+
</div>
|
108 |
+
</div>
|
109 |
+
<div class="analysis-bar">
|
110 |
+
<div class="bar-label">Mild Stress</div>
|
111 |
+
<div class="bar-container">
|
112 |
+
<div class="bar mild" style="width: {confidence_scores[1]}%"></div>
|
113 |
+
<span class="bar-value">{confidence_scores[1]}%</span>
|
114 |
+
</div>
|
115 |
+
</div>
|
116 |
+
<div class="analysis-bar">
|
117 |
+
<div class="bar-label">Very Stress</div>
|
118 |
+
<div class="bar-container">
|
119 |
+
<div class="bar very" style="width: {confidence_scores[2]}%"></div>
|
120 |
+
<span class="bar-value">{confidence_scores[2]}%</span>
|
121 |
+
</div>
|
122 |
+
</div>
|
123 |
+
</div>
|
124 |
+
</div>
|
125 |
+
"""
|
126 |
+
|
127 |
+
return result_html, detailed_html, prediction, main_confidence
|
128 |
+
|
129 |
+
# Create the interface
|
130 |
+
with gr.Blocks(css="""
|
131 |
+
#component-0 {
|
132 |
+
max-width: 900px;
|
133 |
+
margin: auto;
|
134 |
+
padding: 0 20px;
|
135 |
+
}
|
136 |
+
|
137 |
+
.container {
|
138 |
+
background: linear-gradient(135deg, #1a1c29, #2d3748);
|
139 |
+
border-radius: 20px;
|
140 |
+
padding: 2rem;
|
141 |
+
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
|
142 |
+
}
|
143 |
+
|
144 |
+
.header {
|
145 |
+
text-align: center;
|
146 |
+
margin-bottom: 2rem;
|
147 |
+
}
|
148 |
+
|
149 |
+
.title {
|
150 |
+
font-size: 2.5rem;
|
151 |
+
font-weight: bold;
|
152 |
+
background: linear-gradient(45deg, #00c6ff, #0072ff);
|
153 |
+
-webkit-background-clip: text;
|
154 |
+
-webkit-text-fill-color: transparent;
|
155 |
+
margin-bottom: 0.5rem;
|
156 |
+
}
|
157 |
+
|
158 |
+
.subtitle {
|
159 |
+
color: #a0aec0;
|
160 |
+
font-size: 1.1rem;
|
161 |
+
}
|
162 |
+
|
163 |
+
/* Input styles */
|
164 |
+
.input-container {
|
165 |
+
background: rgba(255,255,255,0.05);
|
166 |
+
border-radius: 15px;
|
167 |
+
padding: 1.5rem;
|
168 |
+
margin-bottom: 2rem;
|
169 |
+
}
|
170 |
+
|
171 |
+
textarea {
|
172 |
+
background: rgba(255,255,255,0.07) !important;
|
173 |
+
border: 2px solid rgba(255,255,255,0.1) !important;
|
174 |
+
border-radius: 12px !important;
|
175 |
+
color: white !important;
|
176 |
+
font-size: 1.1rem !important;
|
177 |
+
transition: all 0.3s ease !important;
|
178 |
+
}
|
179 |
+
|
180 |
+
textarea:focus {
|
181 |
+
border-color: #00c6ff !important;
|
182 |
+
box-shadow: 0 0 20px rgba(0,198,255,0.2) !important;
|
183 |
+
}
|
184 |
+
|
185 |
+
/* Result card styles */
|
186 |
+
.result-card {
|
187 |
+
background: rgba(255,255,255,0.07);
|
188 |
+
border-radius: 15px;
|
189 |
+
padding: 1.5rem;
|
190 |
+
margin-bottom: 1.5rem;
|
191 |
+
animation: fadeIn 0.5s ease-out;
|
192 |
+
}
|
193 |
+
|
194 |
+
.prediction-text {
|
195 |
+
font-size: 1.8rem;
|
196 |
+
font-weight: bold;
|
197 |
+
color: white;
|
198 |
+
text-align: center;
|
199 |
+
margin-bottom: 1rem;
|
200 |
+
}
|
201 |
+
|
202 |
+
.confidence-bar-container {
|
203 |
+
background: rgba(255,255,255,0.1);
|
204 |
+
border-radius: 10px;
|
205 |
+
height: 20px;
|
206 |
+
position: relative;
|
207 |
+
overflow: hidden;
|
208 |
+
}
|
209 |
+
|
210 |
+
.confidence-bar {
|
211 |
+
background: linear-gradient(90deg, #00c6ff, #0072ff);
|
212 |
+
height: 100%;
|
213 |
+
border-radius: 10px;
|
214 |
+
transition: width 0.5s ease-out;
|
215 |
+
}
|
216 |
+
|
217 |
+
.confidence-text {
|
218 |
+
position: absolute;
|
219 |
+
top: 50%;
|
220 |
+
left: 50%;
|
221 |
+
transform: translate(-50%, -50%);
|
222 |
+
color: white;
|
223 |
+
font-weight: bold;
|
224 |
+
text-shadow: 0 0 10px rgba(0,0,0,0.5);
|
225 |
+
}
|
226 |
+
|
227 |
+
/* Detailed analysis styles */
|
228 |
+
.detailed-analysis {
|
229 |
+
background: rgba(255,255,255,0.07);
|
230 |
+
border-radius: 15px;
|
231 |
+
padding: 1.5rem;
|
232 |
+
animation: fadeIn 0.5s ease-out;
|
233 |
+
}
|
234 |
+
|
235 |
+
.analysis-title {
|
236 |
+
color: white;
|
237 |
+
font-size: 1.3rem;
|
238 |
+
font-weight: bold;
|
239 |
+
margin-bottom: 1rem;
|
240 |
+
text-align: center;
|
241 |
+
}
|
242 |
+
|
243 |
+
.analysis-bar {
|
244 |
+
margin-bottom: 1rem;
|
245 |
+
}
|
246 |
+
|
247 |
+
.bar-label {
|
248 |
+
color: #a0aec0;
|
249 |
+
margin-bottom: 0.5rem;
|
250 |
+
}
|
251 |
+
|
252 |
+
.bar-container {
|
253 |
+
background: rgba(255,255,255,0.1);
|
254 |
+
border-radius: 8px;
|
255 |
+
height: 15px;
|
256 |
+
position: relative;
|
257 |
+
overflow: hidden;
|
258 |
+
}
|
259 |
+
|
260 |
+
.bar {
|
261 |
+
height: 100%;
|
262 |
+
transition: width 0.5s ease-out;
|
263 |
+
}
|
264 |
+
|
265 |
+
.bar.neutral { background: linear-gradient(90deg, #00f2c3, #0098f0); }
|
266 |
+
.bar.mild { background: linear-gradient(90deg, #ffd600, #ff9100); }
|
267 |
+
.bar.very { background: linear-gradient(90deg, #ff5724, #ff2d55); }
|
268 |
+
|
269 |
+
.bar-value {
|
270 |
+
position: absolute;
|
271 |
+
right: 10px;
|
272 |
+
top: 50%;
|
273 |
+
transform: translateY(-50%);
|
274 |
+
color: white;
|
275 |
+
font-size: 0.9rem;
|
276 |
+
font-weight: bold;
|
277 |
+
}
|
278 |
+
|
279 |
+
@keyframes fadeIn {
|
280 |
+
from { opacity: 0; transform: translateY(10px); }
|
281 |
+
to { opacity: 1; transform: translateY(0); }
|
282 |
+
}
|
283 |
+
|
284 |
+
@media (max-width: 768px) {
|
285 |
+
.container {
|
286 |
+
padding: 1rem;
|
287 |
+
}
|
288 |
+
|
289 |
+
.title {
|
290 |
+
font-size: 2rem;
|
291 |
+
}
|
292 |
+
|
293 |
+
.prediction-text {
|
294 |
+
font-size: 1.5rem;
|
295 |
+
}
|
296 |
+
}
|
297 |
+
""") as iface:
|
298 |
+
gr.HTML("""
|
299 |
+
<div class="header">
|
300 |
+
<div class="title">Klasifikasi Tingkat Stress</div>
|
301 |
+
<div class="subtitle">Jelaskan keadaan emosi Anda dan biarkan AI menganalisis tingkat stres Anda</div>
|
302 |
+
</div>
|
303 |
+
""")
|
304 |
+
|
305 |
+
with gr.Column(elem_classes="container"):
|
306 |
+
text_input = gr.Textbox(
|
307 |
+
label="Describe Your Emotional State",
|
308 |
+
placeholder="Apa kabar hari ini?",
|
309 |
+
lines=4,
|
310 |
+
elem_classes="input-container"
|
311 |
+
)
|
312 |
+
|
313 |
+
result_html = gr.HTML()
|
314 |
+
detailed_html = gr.HTML()
|
315 |
+
prediction = gr.State()
|
316 |
+
confidence = gr.State()
|
317 |
+
|
318 |
+
text_input.change(
|
319 |
+
predict_stress_with_accuracy,
|
320 |
+
inputs=[text_input],
|
321 |
+
outputs=[result_html, detailed_html, prediction, confidence]
|
322 |
+
)
|
323 |
+
|
324 |
+
iface.launch(share=True)
|