# -*- coding: utf-8 -*- """GradioWebsite.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/14D-sxTs35_Vc9__q6maqZ6cb8OqfhTqt """ import gradio as gr import torch import torch.nn.functional as F from transformers import BertTokenizer, BertForSequenceClassification import os def load_model(): model_name = "indobenchmark/indobert-lite-large-p2" model = BertForSequenceClassification.from_pretrained( model_name, num_labels=3, local_files_only=False, ignore_mismatched_sizes=True ) try: local_model_path = "model.pt" # Changed from .safetensors if os.path.exists(local_model_path): weights = torch.load(local_model_path) model.load_state_dict(weights) print("✅ Local model weights loaded successfully!") else: print("❌ No local model weights found. Using pre-trained weights.") except Exception as e: print(f"❌ Error loading local weights: {e}") model.eval() return model # Load model globally model = load_model() # Load the tokenizer tokenizer = BertTokenizer.from_pretrained('indobenchmark/indobert-lite-large-p2') def predict_stress_with_accuracy(text_input): if not text_input.strip(): return None, None, None, None # Print input for debugging print(f"🔍 Input Text: '{text_input}'") # Tokenize the input text inputs = tokenizer(text_input, return_tensors="pt", padding=True, truncation=True, max_length=512) # Print tokenization details print("🔍 Tokenization Details:") print(f" Input IDs: {inputs['input_ids']}") print(f" Attention Mask: {inputs['attention_mask']}") # Get the model's output with torch.no_grad(): output = model(**inputs) # Print raw logits print("🔍 Raw Logits:") print(output.logits) # Apply softmax to get probabilities probabilities = F.softmax(output.logits, dim=1) # Get predictions for all classes probs = probabilities[0].tolist() confidence_scores = [round(p * 100, 1) for p in probs] # Print probabilities print("🔍 Class Probabilities:") print(f" Neutral: {confidence_scores[0]}%") print(f" Mild Stress: {confidence_scores[1]}%") print(f" Very Stress: {confidence_scores[2]}%") # Get main prediction predicted_class = torch.argmax(probabilities, dim=1).item() main_confidence = confidence_scores[predicted_class] # Map the predicted class to stress level stress_levels = {0: "Neutral", 1: "Mild Stress", 2: "Very Stress"} prediction = stress_levels[predicted_class] print(f"🔍 Predicted Class: {prediction} ({main_confidence}% confident)") # Rest of the HTML generation code remains the same... result_html = f"""
{prediction}
{main_confidence}% Confident
""" detailed_html = f"""
Detailed Analysis
Neutral
{confidence_scores[0]}%
Mild Stress
{confidence_scores[1]}%
Very Stress
{confidence_scores[2]}%
""" return result_html, detailed_html, prediction, main_confidence # Create the interface with gr.Blocks(css=""" #component-0 { max-width: 900px; margin: auto; padding: 0 20px; } .container { background: linear-gradient(135deg, #1a1c29, #2d3748); border-radius: 20px; padding: 2rem; box-shadow: 0 10px 30px rgba(0,0,0,0.2); } .header { text-align: center; margin-bottom: 2rem; } .title { font-size: 2.5rem; font-weight: bold; background: linear-gradient(45deg, #00c6ff, #0072ff); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin-bottom: 0.5rem; } .subtitle { color: #a0aec0; font-size: 1.1rem; } /* Input styles */ .input-container { background: rgba(255,255,255,0.05); border-radius: 15px; padding: 1.5rem; margin-bottom: 2rem; } textarea { background: rgba(255,255,255,0.07) !important; border: 2px solid rgba(255,255,255,0.1) !important; border-radius: 12px !important; color: white !important; font-size: 1.1rem !important; transition: all 0.3s ease !important; } textarea:focus { border-color: #00c6ff !important; box-shadow: 0 0 20px rgba(0,198,255,0.2) !important; } /* Result card styles */ .result-card { background: rgba(255,255,255,0.07); border-radius: 15px; padding: 1.5rem; margin-bottom: 1.5rem; animation: fadeIn 0.5s ease-out; } .prediction-text { font-size: 1.8rem; font-weight: bold; color: white; text-align: center; margin-bottom: 1rem; } .confidence-bar-container { background: rgba(255,255,255,0.1); border-radius: 10px; height: 20px; position: relative; overflow: hidden; } .confidence-bar { background: linear-gradient(90deg, #00c6ff, #0072ff); height: 100%; border-radius: 10px; transition: width 0.5s ease-out; } .confidence-text { position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); color: white; font-weight: bold; text-shadow: 0 0 10px rgba(0,0,0,0.5); } /* Detailed analysis styles */ .detailed-analysis { background: rgba(255,255,255,0.07); border-radius: 15px; padding: 1.5rem; animation: fadeIn 0.5s ease-out; } .analysis-title { color: white; font-size: 1.3rem; font-weight: bold; margin-bottom: 1rem; text-align: center; } .analysis-bar { margin-bottom: 1rem; } .bar-label { color: #a0aec0; margin-bottom: 0.5rem; } .bar-container { background: rgba(255,255,255,0.1); border-radius: 8px; height: 15px; position: relative; overflow: hidden; } .bar { height: 100%; transition: width 0.5s ease-out; } .bar.neutral { background: linear-gradient(90deg, #00f2c3, #0098f0); } .bar.mild { background: linear-gradient(90deg, #ffd600, #ff9100); } .bar.very { background: linear-gradient(90deg, #ff5724, #ff2d55); } .bar-value { position: absolute; right: 10px; top: 50%; transform: translateY(-50%); color: white; font-size: 0.9rem; font-weight: bold; } @keyframes fadeIn { from { opacity: 0; transform: translateY(10px); } to { opacity: 1; transform: translateY(0); } } @media (max-width: 768px) { .container { padding: 1rem; } .title { font-size: 2rem; } .prediction-text { font-size: 1.5rem; } } """) as iface: gr.HTML("""
Klasifikasi Tingkat Stress
Jelaskan keadaan emosi Anda dan biarkan AI menganalisis tingkat stres Anda
""") with gr.Column(elem_classes="container"): text_input = gr.Textbox( label="Describe Your Emotional State", placeholder="Apa kabar hari ini?", lines=4, elem_classes="input-container" ) result_html = gr.HTML() detailed_html = gr.HTML() prediction = gr.State() confidence = gr.State() text_input.change( predict_stress_with_accuracy, inputs=[text_input], outputs=[result_html, detailed_html, prediction, confidence] ) iface.launch(share=True)