test tts
Browse files
app.py
CHANGED
@@ -1,239 +1,54 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import json
|
3 |
-
import librosa
|
4 |
-
import os
|
5 |
-
import soundfile as sf
|
6 |
-
import tempfile
|
7 |
-
import uuid
|
8 |
-
import transformers
|
9 |
import torch
|
10 |
-
import time
|
11 |
-
import spaces
|
12 |
-
|
13 |
-
from nemo.collections.asr.models import ASRModel
|
14 |
-
|
15 |
-
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
16 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
17 |
-
from threading import Thread
|
18 |
|
19 |
-
|
20 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
MAX_AUDIO_SECONDS = 40 # wont try to transcribe if longer than this
|
25 |
-
DESCRIPTION = '''
|
26 |
-
<div>
|
27 |
-
<h1 style='text-align: center'>MyAlexa: Voice Chat Assistant</h1>
|
28 |
-
<p style='text-align: center'>MyAlexa is a demo of a voice chat assistant with chat logs that accepts audio input and outputs an AI response. </p>
|
29 |
-
<p>This space uses <a href="https://huggingface.co/nvidia/canary-1b"><b>NVIDIA Canary 1B</b></a> for Automatic Speech-to-text Recognition (ASR), <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama 3 8B Insruct</b></a> for the large language model (LLM) and <a href="https://https://huggingface.co/docs/transformers/en/model_doc/vits"><b>VITS</b></a> for text to speech (TTS).</p>
|
30 |
-
<p>This demo accepts audio inputs not more than 40 seconds long.</p>
|
31 |
-
<p>Transcription and responses are limited to the English language.</p>
|
32 |
-
</div>
|
33 |
-
'''
|
34 |
-
PLACEHOLDER = """
|
35 |
-
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
36 |
-
<img src="https://i.ibb.co/S35q17Q/My-Alexa-Logo.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
|
37 |
-
<p style="font-size: 28px; margin-bottom: 2px; opacity: 0.65;">What's on your mind?</p>
|
38 |
-
</div>
|
39 |
-
"""
|
40 |
|
41 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
"""
|
69 |
-
Convert all files to monochannel 16 kHz wav files.
|
70 |
-
Do not convert and raise error if audio is too long.
|
71 |
-
Returns output filename and duration.
|
72 |
-
"""
|
73 |
-
|
74 |
-
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
|
75 |
-
|
76 |
-
duration = librosa.get_duration(y=data, sr=sr)
|
77 |
-
|
78 |
-
if duration > MAX_AUDIO_SECONDS:
|
79 |
-
raise gr.Error(
|
80 |
-
f"This demo can transcribe up to {MAX_AUDIO_SECONDS} seconds of audio. "
|
81 |
-
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
|
82 |
-
"(click on the scissors icon to start trimming audio)."
|
83 |
-
)
|
84 |
-
|
85 |
-
if sr != SAMPLE_RATE:
|
86 |
-
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
87 |
-
|
88 |
-
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
89 |
-
|
90 |
-
# save output audio
|
91 |
-
sf.write(out_filename, data, SAMPLE_RATE)
|
92 |
-
|
93 |
-
return out_filename, duration
|
94 |
-
|
95 |
-
def transcribe(audio_filepath):
|
96 |
-
"""
|
97 |
-
Transcribes a converted audio file.
|
98 |
-
Set to english language with punctuations.
|
99 |
-
Returns the transcribed text as a string.
|
100 |
-
"""
|
101 |
-
|
102 |
-
if audio_filepath is None:
|
103 |
-
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
104 |
-
|
105 |
-
utt_id = uuid.uuid4()
|
106 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
107 |
-
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
108 |
-
|
109 |
-
# make manifest file and save
|
110 |
-
manifest_data = {
|
111 |
-
"audio_filepath": converted_audio_filepath,
|
112 |
-
"source_lang": "en",
|
113 |
-
"target_lang": "en",
|
114 |
-
"taskname": "asr",
|
115 |
-
"pnc": "yes",
|
116 |
-
"answer": "predict",
|
117 |
-
"duration": str(duration),
|
118 |
-
}
|
119 |
-
|
120 |
-
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
121 |
-
|
122 |
-
with open(manifest_filepath, 'w') as fout:
|
123 |
-
line = json.dumps(manifest_data)
|
124 |
-
fout.write(line + '\n')
|
125 |
-
|
126 |
-
# call transcribe, passing in manifest filepath
|
127 |
-
output_text = canary_model.transcribe(manifest_filepath)[0]
|
128 |
-
|
129 |
-
return output_text
|
130 |
-
|
131 |
-
def add_message(history, message):
|
132 |
-
"""
|
133 |
-
Adds the input message in the chatbot.
|
134 |
-
Returns the updated chatbot history.
|
135 |
-
"""
|
136 |
-
history.append((message, None))
|
137 |
-
return history
|
138 |
-
|
139 |
-
def bot(history, message):
|
140 |
-
"""
|
141 |
-
Gets the bot's response and places the user and bot messages in the chatbot
|
142 |
-
Returns the appended chatbot history.
|
143 |
-
"""
|
144 |
-
response = bot_response(message, history)
|
145 |
-
lines = response.split("\n")
|
146 |
-
complete_lines = '\n'.join(lines[2:])
|
147 |
-
answer = ""
|
148 |
-
for character in complete_lines:
|
149 |
-
answer += character
|
150 |
-
new_tuple = list(history[-1])
|
151 |
-
new_tuple[1] = answer
|
152 |
-
history[-1] = tuple(new_tuple)
|
153 |
-
time.sleep(0.05)
|
154 |
-
yield history
|
155 |
-
#return history
|
156 |
-
|
157 |
-
@spaces.GPU()
|
158 |
-
def bot_response(message, history):
|
159 |
-
"""
|
160 |
-
Generates a streaming response using the llama3-8b model.
|
161 |
-
Set max_new_tokens = 100, temperature=0.6, and top_p=0.9
|
162 |
-
Returns the generated response in string format.
|
163 |
-
"""
|
164 |
-
conversation = []
|
165 |
-
for user, assistant in history:
|
166 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
167 |
-
conversation.append({"role": "user", "content": message})
|
168 |
-
|
169 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(llama3_model.device)
|
170 |
-
|
171 |
-
outputs = llama3_model.generate(
|
172 |
-
input_ids,
|
173 |
-
max_new_tokens = 100,
|
174 |
-
eos_token_id = terminators,
|
175 |
-
do_sample=True,
|
176 |
-
temperature=0.6,
|
177 |
-
top_p=0.9,
|
178 |
-
pad_token_id=tokenizer.pad_token_id,
|
179 |
-
)
|
180 |
-
|
181 |
-
out = outputs[0][input_ids.shape[-1]:]
|
182 |
-
|
183 |
-
return tokenizer.decode(out, skip_special_tokens=True)
|
184 |
-
|
185 |
-
|
186 |
-
with gr.Blocks(
|
187 |
-
title="MyAlexa",
|
188 |
-
css="""
|
189 |
-
textarea { font-size: 18px;}
|
190 |
-
""",
|
191 |
-
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
|
192 |
-
) as demo:
|
193 |
-
|
194 |
-
gr.HTML(DESCRIPTION)
|
195 |
-
chatbot = gr.Chatbot(
|
196 |
-
[],
|
197 |
-
elem_id="chatbot",
|
198 |
-
bubble_full_width=False,
|
199 |
-
placeholder=PLACEHOLDER,
|
200 |
-
label='MyAlexa'
|
201 |
-
)
|
202 |
-
with gr.Row():
|
203 |
-
with gr.Column():
|
204 |
-
gr.HTML(
|
205 |
-
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"
|
206 |
-
)
|
207 |
-
|
208 |
-
audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")
|
209 |
-
|
210 |
-
|
211 |
-
with gr.Column():
|
212 |
|
213 |
-
|
|
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
submit_button.click(
|
232 |
-
fn=transcribe,
|
233 |
-
inputs = [audio_file],
|
234 |
-
outputs = [chat_input]
|
235 |
-
)
|
236 |
|
237 |
-
|
238 |
-
if __name__ == "__main__":
|
239 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
from transformers import pipeline
|
|
|
4 |
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
+
pipe_dict = {
|
11 |
+
"original_pipe": pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0),
|
12 |
+
}
|
13 |
+
|
14 |
+
# Inference
|
15 |
+
def generate_audio(text):
|
16 |
+
|
17 |
+
output = pipe_dict["original_pipe"](text)
|
18 |
+
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Prediction from the original checkpoint {"kakao-enterprise/vits-ljs"}", show_label=True,
|
19 |
+
visible=True)
|
20 |
+
|
21 |
+
###############language = "english"
|
22 |
+
return output
|
23 |
+
|
24 |
+
css = """
|
25 |
+
#container{
|
26 |
+
margin: 0 auto;
|
27 |
+
max-width: 80rem;
|
28 |
+
}
|
29 |
+
#intro{
|
30 |
+
max-width: 100%;
|
31 |
+
text-align: center;
|
32 |
+
margin: 0 auto;
|
33 |
+
}
|
34 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Gradio blocks demo
|
37 |
+
with gr.Blocks(css=css) as demo_blocks:
|
38 |
|
39 |
+
with gr.Row():
|
40 |
+
with gr.Column():
|
41 |
+
inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
|
42 |
+
btn = gr.Button("Generate Audio!")
|
43 |
|
44 |
+
|
45 |
+
with gr.Column():
|
46 |
+
outputs = []
|
47 |
+
for i in range(max_speakers):
|
48 |
+
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
|
49 |
+
outputs.append(out_audio)
|
|
|
50 |
|
51 |
+
btn.click(generate_audio, [inp_text], outputs)
|
52 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
demo_blocks.queue().launch()
|
|
|
|