Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,094 Bytes
5f52293 ed2f5ce 69f2e98 ed2f5ce 2a36ff2 82043d5 1061b7a ed2f5ce 02e5bf0 ed2f5ce 2a200be 8f7c5f5 49f29b5 8f7c5f5 7ad8369 e7e0762 4f446f9 ed2f5ce 1197e50 4fd9098 49f29b5 bd00948 1197e50 1061b7a 2e5a20c d5685b0 7f9822a ed2f5ce d5685b0 1061b7a 724aed2 d5685b0 1197e50 79549f2 2a200be 1197e50 ed2f5ce e1310ff ed2f5ce d5685b0 e7e0762 1197e50 e7e0762 4fd9098 e7e0762 8f7c5f5 e7e0762 8f7c5f5 e1310ff 8f7c5f5 e7e0762 e1310ff 8f7c5f5 df220f6 e7e0762 a685a6f e1310ff b7359e6 e1310ff 1197e50 e7e0762 e1310ff 5e6cec6 e7e0762 4fd9098 e7e0762 5e6cec6 e7e0762 dab87df e7e0762 dab87df c39dad7 dab87df c39dad7 dab87df 1bad456 c39dad7 e7e0762 e1310ff 5c0af0e e7e0762 5e6cec6 e7e0762 5c0af0e e7e0762 5e6cec6 e7e0762 6b07c5f e7e0762 df220f6 2a200be 82043d5 2a200be ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 8f7c5f5 ac48055 2a200be ac48055 2a200be 1197e50 2a200be df220f6 1197e50 2a200be df220f6 2a200be d5685b0 a742a0d 2a200be df220f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
import spaces
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusion3Pipeline
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from langchain_groq import ChatGroq
from PIL import Image
from tavily import TavilyClient
from langchain.schema import AIMessage
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import RetrievalQA
from torchvision import transforms
import json
import pandas
# Initialize models and clients
MODEL = 'llama-3.1-70b-versatile'
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
# Updated Image generation model
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
# Tavily Client for web search
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API"))
# Function to play voice output
def play_voice_output(response):
print("Executing play_voice_output function")
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
return "output.wav"
# Function to classify user input using LLM
def classify_function(user_prompt):
prompt = f"""
You are a function classifier AI assistant. You are given a user input and you need to classify it into one of the following functions:
- `image_generation`: If the user wants to generate an image.
- `image_vqa`: If the user wants to ask questions about an image.
- `document_qa`: If the user wants to ask questions about a document.
- `text_to_text`: If the user wants a text-based response.
Respond with a JSON object containing only the chosen function. For example:
```json
{{"function": "image_generation"}}
```
User input: {user_prompt}
"""
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt,
}
],
model="llama3-8b-8192",
)
try:
response = json.loads(chat_completion.choices[0].message.content)
function = response.get("function")
return function
except json.JSONDecodeError:
print(f"Error decoding JSON: {chat_completion.choices[0].message.content}")
return "text_to_text" # Default to text-to-text if JSON parsing fails
# Document Question Answering Tool
class DocumentQuestionAnswering:
def __init__(self, document):
self.document = document
self.qa_chain = self._setup_qa_chain()
def _setup_qa_chain(self):
print("Setting up DocumentQuestionAnswering tool")
loader = TextLoader(self.document)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings()
db = FAISS.from_documents(texts, embeddings)
retriever = db.as_retriever()
qa_chain = RetrievalQA.from_chain_type(
llm=ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY")),
chain_type="stuff",
retriever=retriever,
)
return qa_chain
def run(self, query: str) -> str:
print("Executing DocumentQuestionAnswering tool")
response = self.qa_chain.run(query)
return str(response)
# Function to handle different input types and choose the right pipeline
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
print(f"Handling input: {user_prompt}")
# Initialize the LLM
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
# Handle voice-only mode
if audio:
print("Processing audio input")
transcription = client.audio.transcriptions.create(
file=(audio.name, audio.read()),
model="whisper-large-v3"
)
user_prompt = transcription.text
response = llm.invoke(query=user_prompt)
audio_output = play_voice_output(response)
return "Response generated.", audio_output
# Handle websearch mode
if websearch:
print("Executing Web Search")
answer = tavily_client.qna_search(query=user_prompt)
return answer, None
# Handle cases with only image or document input
if user_prompt is None or user_prompt.strip() == "":
if image:
user_prompt = "Describe this image"
elif document:
user_prompt = "Summarize this document"
# Classify user input using LLM
function = classify_function(user_prompt)
# Handle different functions
if function == "image_generation":
print("Executing Image Generation")
image = pipe(
user_prompt,
negative_prompt="",
num_inference_steps=15,
guidance_scale=7.0,
).images[0]
image.save("output.jpg")
return "output.jpg", None
elif function == "image_vqa":
print("Executing Image Description")
if image:
print("1")
image = Image.open(image).convert('RGB')
print("2")
# Add preprocessing steps here (see examples above)
preprocess = transforms.Compose([
transforms.Resize((512, 512)), # Example size, replace with the correct one
transforms.ToTensor(),
])
image = preprocess(image)
image = image.unsqueeze(0) # Add batch dimension
image = image.to(torch.float32) # Ensure correct data type
print("3")
messages = [{"role": "user", "content": user_prompt}]
print("4")
response,ctxt = vqa_model.chat(image=image, msgs=messages, tokenizer=tokenizer, context=None, temperature=0.5)
print("5")
return response, None
else:
return "Please upload an imagee.", None
elif function == "document_qa":
print("Executing Document Summarization")
if document:
document_qa = DocumentQuestionAnswering(document)
response = document_qa.run(user_prompt)
return response, None
else:
return "Please upload a documentt.", None
else: # function == "text_to_text"
print("Executing Text-to-Text")
response = llm.invoke(query=user_prompt)
return response, None
# Main interface function
@spaces.GPU(duration=120)
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
print("Starting main_interface function")
vqa_model.to(device='cuda', dtype=torch.bfloat16)
tts_model.to("cuda")
pipe.to("cuda")
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}, document: {document}")
try:
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch, document=document)
print("handle_input function executed successfully")
except Exception as e:
print(f"Error in handle_input: {e}")
response = "Error occurred during processing."
return response
def create_ui():
with gr.Blocks(css="""
/* Overall Styling */
body {
font-family: 'Poppins', sans-serif;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
margin: 0;
padding: 0;
color: #333;
}
/* Title Styling */
.gradio-container h1 {
text-align: center;
padding: 20px 0;
background: linear-gradient(45deg, #007bff, #00c6ff);
color: white;
font-size: 2.5em;
font-weight: bold;
letter-spacing: 1px;
text-transform: uppercase;
margin: 0;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2);
}
/* Input Area Styling */
.gradio-container .gr-row {
display: flex;
justify-content: space-around;
align-items: center;
padding: 20px;
background-color: white;
border-radius: 10px;
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
.gradio-container .gr-column {
flex: 1;
margin: 0 10px;
}
/* Textbox Styling */
.gradio-container textarea {
width: calc(100% - 20px);
padding: 15px;
border: 2px solid #007bff;
border-radius: 8px;
font-size: 1.1em;
transition: border-color 0.3s, box-shadow 0.3s;
}
.gradio-container textarea:focus {
border-color: #00c6ff;
box-shadow: 0px 0px 8px rgba(0, 198, 255, 0.5);
outline: none;
}
/* Button Styling */
.gradio-container button {
background: linear-gradient(45deg, #007bff, #00c6ff);
color: white;
padding: 15px 25px;
border: none;
border-radius: 8px;
cursor: pointer;
font-size: 1.2em;
font-weight: bold;
transition: background 0.3s, transform 0.3s;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
}
.gradio-container button:hover {
background: linear-gradient(45deg, #0056b3, #009bff);
transform: translateY(-3px);
}
.gradio-container button:active {
transform: translateY(0);
}
/* Output Area Styling */
.gradio-container .output-area {
padding: 20px;
text-align: center;
background-color: #f7f9fc;
border-radius: 10px;
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.1);
margin-top: 20px;
}
/* Image Styling */
.gradio-container img {
max-width: 100%;
height: auto;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
transition: transform 0.3s, box-shadow 0.3s;
}
.gradio-container img:hover {
transform: scale(1.05);
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.2);
}
/* Checkbox Styling */
.gradio-container input[type="checkbox"] {
width: 20px;
height: 20px;
cursor: pointer;
accent-color: #007bff;
transition: transform 0.3s;
}
.gradio-container input[type="checkbox"]:checked {
transform: scale(1.2);
}
/* Audio and Document Upload Styling */
.gradio-container .gr-file-upload input[type="file"] {
width: 100%;
padding: 10px;
border: 2px solid #007bff;
border-radius: 8px;
cursor: pointer;
background-color: white;
transition: border-color 0.3s, background-color 0.3s;
}
.gradio-container .gr-file-upload input[type="file"]:hover {
border-color: #00c6ff;
background-color: #f0f8ff;
}
/* Advanced Tooltip Styling */
.gradio-container .gr-tooltip {
position: relative;
display: inline-block;
cursor: pointer;
}
.gradio-container .gr-tooltip .tooltiptext {
visibility: hidden;
width: 200px;
background-color: black;
color: #fff;
text-align: center;
border-radius: 6px;
padding: 5px;
position: absolute;
z-index: 1;
bottom: 125%;
left: 50%;
margin-left: -100px;
opacity: 0;
transition: opacity 0.3s;
}
.gradio-container .gr-tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
}
/* Footer Styling */
.gradio-container footer {
text-align: center;
padding: 10px;
background: #007bff;
color: white;
font-size: 0.9em;
border-radius: 0 0 10px 10px;
box-shadow: 0px -2px 8px rgba(0, 0, 0, 0.1);
}
""") as demo:
gr.Markdown("# AI Assistant")
with gr.Row():
with gr.Column(scale=2):
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
document_input = gr.File(type="filepath", label="Upload a document", elem_id="document-icon")
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
with gr.Column(scale=1):
submit = gr.Button("Submit")
output_label = gr.Label(label="Output")
audio_output = gr.Audio(label="Audio Output", visible=False)
submit.click(
fn=main_interface,
inputs=[user_prompt, image_input, audio_input, voice_only_mode, websearch_mode, document_input],
outputs=[output_label, audio_output]
)
voice_only_mode.change(
lambda x: gr.update(visible=not x),
inputs=voice_only_mode,
outputs=[user_prompt, image_input, websearch_mode, document_input, submit]
)
voice_only_mode.change(
lambda x: gr.update(visible=x),
inputs=voice_only_mode,
outputs=[audio_input]
)
return demo
# Launch the UI
demo = create_ui()
demo.launch() |