Spaces:
Runtime error
Runtime error
File size: 6,077 Bytes
2ccf6b5 7eda31a 2ccf6b5 7eda31a 2ccf6b5 7eda31a 37f9a5d 7eda31a 2ccf6b5 bd45f54 37f9a5d 2ccf6b5 37f9a5d 2ccf6b5 7eda31a 2ccf6b5 7eda31a 39cc8c4 7eda31a 39cc8c4 7eda31a 2ccf6b5 37f9a5d 2ccf6b5 7eda31a 2ccf6b5 7eda31a 37f9a5d 2dd65dd 37f9a5d 2dd65dd 7eda31a 2ccf6b5 7eda31a 2ccf6b5 fffaa2a 2ccf6b5 7eda31a 2ccf6b5 e42c405 7eda31a 37f9a5d 7eda31a 2ccf6b5 37f9a5d 7eda31a 2ccf6b5 37f9a5d 2ccf6b5 37f9a5d 2ccf6b5 37f9a5d 2ccf6b5 7eda31a 37f9a5d 2ccf6b5 37f9a5d 2ccf6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
from pathlib import Path
import torchaudio
import gradio as gr
import numpy as np
import torch
import json
from hifigan.config import v1
from hifigan.denoiser import Denoiser
from hifigan.env import AttrDict
from hifigan.models import Generator as HiFiGAN
from pflow.models.pflow_tts import pflowTTS
from pflow.text import text_to_sequence, sequence_to_text
from pflow.utils.utils import intersperse
from pflow.data.text_mel_datamodule import mel_spectrogram
from pflow.utils.model import normalize
from vocos import Vocos
PFLOW_MODEL_PATH = 'checkpoints/checkpoint_epoch=649.ckpt'
#PFLOW_MODEL_PATH = 'checkpoint_m_epoch=054.ckpt'
VOCODER22_MODEL_PATH = 'BSC-LT/vocos-mel-22khz'
VOCODER44_MODEL_PATH = 'patriotyk/vocos-mel-hifigan-compat-44100khz'
HIFIGAN_MODEL_PATH = 'checkpoints/g_00120000'
transform = torchaudio.transforms.Vol(gain=-32, gain_type="db")
wav, sr = torchaudio.load('prompt22050.wav')
prompt = mel_spectrogram(
transform(wav),
1024,
80,
22050,
256,
1024,
0,
8000,
center=False,
)[:,:,:264]
def process_text(text: str, device: torch.device):
x = torch.tensor(
intersperse(text_to_sequence(text, ["ukr_cleaners"]), 0),
dtype=torch.long,
device=device,
)[None]
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
x_phones = sequence_to_text(x.squeeze(0).tolist())
return {"x_orig": text, "x": x, "x_lengths": x_lengths, 'x_phones':x_phones}
def load_hifigan(checkpoint_path, device):
h = AttrDict(v1)
hifigan = HiFiGAN(h).to(device)
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
_ = hifigan.eval()
hifigan.remove_weight_norm()
return hifigan
def load_vocos(checkpoint_path, config_path, device):
model = Vocos.from_hparams(config_path).to(device)
raw_model = torch.load(checkpoint_path, map_location=device)
raw_model = raw_model if 'state_dict' not in raw_model else raw_model['state_dict']
model.load_state_dict(raw_model, strict=False)
model.eval()
return model
def to_waveform(mel, vocoder, denoiser=None):
return vocoder.decode(mel).clamp(-1, 1).cpu().squeeze()
# audio = vocoder(mel).clamp(-1, 1)
# if denoiser is not None:
# audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
# return audio.cpu().squeeze()
def get_device():
if torch.cuda.is_available():
print("[+] GPU Available! Using GPU")
device = torch.device("cuda")
else:
print("[-] GPU not available or forced CPU run! Using CPU")
device = torch.device("cpu")
return device
device = get_device()
model = pflowTTS.load_from_checkpoint(PFLOW_MODEL_PATH, map_location=device)
_ = model.eval()
hifigan = load_hifigan(HIFIGAN_MODEL_PATH, device)
vocos_22050 = Vocos.from_pretrained(VOCODER22_MODEL_PATH, device_map=device)
#vocos_44100 = load_vocos('checkpoints/vocos_checkpoint_epoch=209_step=3924480_val_loss=3.7036_44100_11.ckpt', 'vocos.yaml', device)
vocos_44100 = Vocos.from_pretrained(VOCODER44_MODEL_PATH, device_map=device)
denoiser = None#Denoiser(vocoder, mode="zeros")
@torch.inference_mode()
def synthesise(text, speed):
if len(text) > 1000:
raise gr.Error("Текст повинен бути коротшим за 1000 символів.")
text_processed = process_text(text.strip(), device)
output = model.synthesise(
text_processed["x"].to(device),
text_processed["x_lengths"].to(device),
n_timesteps=40,
temperature=0.0,
length_scale=1/speed,
prompt=normalize(prompt, model.mel_mean, model.mel_std).to(device),
guidance_scale=2.0
)
waveform_vocos = vocos_22050.decode(output["mel"]).cpu().squeeze()
waveform_vocos_44100 = vocos_44100.decode(output["mel"]).cpu().squeeze()
waveform_hifigan = hifigan(output["mel"]).clamp(-1, 1).cpu().squeeze()
transform = torchaudio.transforms.Vol(gain=-18, gain_type="db")
return text_processed['x_phones'][1::2], (44100, waveform_vocos_44100.numpy()), (22050, waveform_vocos.numpy()), (22050, transform(waveform_hifigan).numpy())
description = f'''
# Експериментальна апка для генерації аудіо з тексту.
pflow checkpoint {PFLOW_MODEL_PATH}
Vocos 44100 аудіо - {VOCODER44_MODEL_PATH}
Vocos 22050 аудіо - {VOCODER22_MODEL_PATH}
HIFIGAN 22050 аудіо - {HIFIGAN_MODEL_PATH}
'''
if __name__ == "__main__":
i = gr.Interface(
fn=synthesise,
description=description,
inputs=[
gr.Text(label='Текст для синтезу:', lines=5, max_lines=10),
gr.Slider(minimum=0.6, maximum=2.0, label="Швидкість", value=1.0)
],
outputs=[
gr.Text(label='Фонемізований текст:', lines=5),
gr.Audio(
label="Vocos 44100 аудіо:",
autoplay=False,
streaming=False,
type="numpy",
),
gr.Audio(
label="Vocos 22050 аудіо:",
autoplay=False,
streaming=False,
type="numpy",
),
gr.Audio(
label="HIFIGAN 22050 аудіо:",
autoplay=False,
streaming=False,
type="numpy",
)
],
allow_flagging ='manual',
#flagging_options=[("Якщо дуже погоне аудіо, тисни цю кнопку.", "negative")],
cache_examples=True,
title='',
# description=description,
# article=article,
# examples=examples,
)
i.queue(max_size=20, default_concurrency_limit=4)
i.launch(share=False, server_name="0.0.0.0")
|