VasudevaK's picture
dependency
539697b
raw
history blame
5.35 kB
import streamlit as st
from PIL import Image
# from pdf2image import convert_from_path
import pandas as pd
import yake
import fitz
import nltk
from gtts import gTTS
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import string
import os
import re
os.system('pip install -q pytesseract')
import pytesseract
st.title("Extract info from Files")
st.sidebar.title('Hyper Params')
menu = ["Image","Dataset","DocumentFiles","About"]
choice = st.sidebar.selectbox("Select the type of data", menu)
no_of_keys = st.sidebar.slider('Select the no of keywords', 1, 20, 2, 2)
output = 'response'
output = st.selectbox('Select the type of output', ('keys', 'response'))
# pre processing the images
filters = ['Gaussian', 'Low pass', 'High Pass', 'System defined']
filter = st.sidebar.selectbox("Select the type of filter to preprocess the image", filters)
# tes = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe'
# pytesseract.pytesseract.tesseract_cmd = tes
extractor = yake.KeywordExtractor()
language = 'en'
max_ngram_size = st.sidebar.slider('Select the parameter for ngram', 1, 20, 3, 2)
deduplication_threshold = st.sidebar.slider('Select the parameter for DD threshold', 1, 10, 9, 1)
deduplication_threshold = deduplication_threshold/10
numOfKeywords = 100
custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, top=numOfKeywords, features=None)
lemmer = nltk.stem.WordNetLemmatizer()
def LemTokens(tokens):
return [lemmer.lemmatize(token) for token in tokens]
remove_punct_dict= dict((ord(punct), None) for punct in string.punctuation)
def LemNormalize(text):
return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict)))
def rees(glo_text, keys):
for key in keys[:no_of_keys]:
# st.write(type(glo_text))
sent_tokens = nltk.sent_tokenize(glo_text)
word_tokens = nltk.word_tokenize(glo_text)
sent_tokens.append(key)
word_tokens = word_tokens + nltk.word_tokenize(key)
TfidfVec = TfidfVectorizer(tokenizer = LemNormalize, stop_words='english')
tfidf = TfidfVec.fit_transform(sent_tokens)
vals = cosine_similarity(tfidf[-1], tfidf)
idx = vals.argsort()[0][-2]
response = sent_tokens[idx]
if(output == 'response'):
st.write(' - ' + key + ':' + response)
else:
st.write(' - ' + key)
response = re.sub("[^a-zA-Z0-9]","",response)
myobj = gTTS(text=response, lang=language, slow=False)
myobj.save("audio.mp3")
st.audio("audio.mp3", format='audio/ogg')
os.remove("audio.mp3")
def load_image(image_file):
img = Image.open(image_file)
st.image(img, width=250)
text = pytesseract.image_to_string(img)
img.close()
return text
# text = pytesseract.image_to_string(img)
def load_pdf(data_file):
doc = fitz.open(stream=data_file.read(), filetype="pdf")
text = ""
glo_text = ''
for page in doc:
text = text + page.get_text()
glo_text += text
keywords = custom_kw_extractor.extract_keywords(text)
for kw in keywords[::-1]:
if(kw[1] > 0.1):
keys.append(kw[0])
# st.write(keys)
doc.close()
return glo_text, keys
keys = []
def tes_image(image_file):
if image_file != None:
# add filters if time permits
glo_text = ''
# text = pytesseract.image_to_string(load_image(image_file)) # can add a specific language to detect the text on the screen
# st.image(load_image(image_file),width=250)
# st.write(text)
text = load_image(image_file)
glo_text += text
keywords = custom_kw_extractor.extract_keywords(text)
for kw in keywords[::-1]:
if(kw[1] > 0.1):
keys.append(kw[0])
# st.write(keys)
return glo_text, keys
def tes_doc(data_file):
if data_file != None:
tup = load_pdf(data_file)
return tup
def convert_df_to_text(df):
pass # implement key to text here using key2text package
if choice == "Image":
st.subheader("Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
if image_file != None:
file_details = {"filename":image_file.name, "filetype":image_file.type, "filesize":image_file.size}
st.write(file_details)
glo_text, keys = tes_image(image_file)
rees(glo_text, keys)
elif choice == "Dataset":
st.subheader("Dataset")
data_file = st.file_uploader("Upload CSV",type=["csv"])
if data_file != None:
file_details = {"filename":data_file, "filetype":data_file.type, "filesize":data_file.size}
st.write(file_details)
df = pd.read_csv(data_file)
st.write(df)
convert_df_to_text(df)
elif choice == "DocumentFiles":
st.subheader("DocumentFiles")
docx_file = st.file_uploader("Upload Document", type=["pdf","docx","txt"])
if st.button("Process"):
if docx_file is not None:
file_details = {"filename":docx_file.name, "filetype":docx_file.type, "filesize":docx_file.size}
st.write(file_details)
glo_text, keys = tes_doc(docx_file)
rees(glo_text, keys)