Spaces:
Runtime error
Runtime error
File size: 11,670 Bytes
0035a82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import torch
import torch.nn as nn
import math
import timm
from timm.models.layers import trunc_normal_
from timm.models.vision_transformer import PatchEmbed, Mlp
# assert timm.__version__ == "0.3.2" # version checks
import einops
import torch.utils.checkpoint
# the xformers lib allows less memory, faster training and inference
try:
import xformers
import xformers.ops
except:
XFORMERS_IS_AVAILBLE = False
# print('xformers disabled')
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def patchify(imgs, patch_size):
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
return x
def unpatchify(x, channels=3):
patch_size = int((x.shape[2] // channels) ** 0.5)
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2]
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, L, C = x.shape
qkv = self.qkv(x)
if XFORMERS_IS_AVAILBLE: # the xformers lib allows less memory, faster training and inference
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
else:
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
self.use_checkpoint = use_checkpoint
def forward(self, x, skip=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
else:
return self._forward(x, skip)
def _forward(self, x, skip=None):
if self.skip_linear is not None:
# print('x shape', x.shape)
# print('skip shape', skip.shape)
# exit()
x = self.skip_linear(torch.cat([x, skip], dim=-1))
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class UViT(nn.Module):
def __init__(self, input_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, mlp_time_embed=False, num_classes=-1,
use_checkpoint=False, conv=True, skip=True, num_frames=16, class_guided=False, use_lora=False):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_classes = num_classes
self.in_chans = in_chans
self.patch_embed = PatchEmbed(
img_size=input_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.time_embed = nn.Sequential(
nn.Linear(embed_dim, 4 * embed_dim),
nn.SiLU(),
nn.Linear(4 * embed_dim, embed_dim),
) if mlp_time_embed else nn.Identity()
if self.num_classes > 0:
self.label_emb = nn.Embedding(self.num_classes, embed_dim)
self.extras = 2
else:
self.extras = 1
self.pos_embed = nn.Parameter(torch.zeros(1, self.extras + num_patches, embed_dim))
self.frame_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.in_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.mid_block = Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
self.out_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.norm = norm_layer(embed_dim)
self.patch_dim = patch_size ** 2 * in_chans
self.decoder_pred = nn.Linear(embed_dim, self.patch_dim, bias=True)
self.final_layer = nn.Conv2d(self.in_chans, self.in_chans * 2, 3, padding=1) if conv else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.frame_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed'}
def forward_(self, x, timesteps, y=None):
x = self.patch_embed(x) # 48, 256, 1152
# print(x.shape)
B, L, D = x.shape
time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152
# print(time_token.shape)
time_token = time_token.unsqueeze(dim=1) # 3, 1, 1152
x = torch.cat((time_token, x), dim=1)
if y is not None:
label_emb = self.label_emb(y)
label_emb = label_emb.unsqueeze(dim=1)
x = torch.cat((label_emb, x), dim=1)
x = x + self.pos_embed
skips = []
for blk in self.in_blocks:
x = blk(x)
skips.append(x)
x = self.mid_block(x)
for blk in self.out_blocks:
x = blk(x, skips.pop())
x = self.norm(x)
x = self.decoder_pred(x)
assert x.size(1) == self.extras + L
x = x[:, self.extras:, :]
x = unpatchify(x, self.in_chans)
x = self.final_layer(x)
return x
def forward(self, x, timesteps, y=None):
# print(x.shape)
batch, frame, _, _, _ = x.shape
# θΏιrearrangeεζ―ιfζ―εδΈδΈͺθ§ι’
x = einops.rearrange(x, 'b f c h w -> (b f) c h w') # 3 16 4 256 256
x = self.patch_embed(x) # 48, 256, 1152
B, L, D = x.shape
time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152
# timestep_spatialηrepeatιθ¦δΏθ―ζ―fεΈ§δΈΊεδΈδΈͺtimesteps
time_token_spatial = einops.repeat(time_token, 'n d -> (n c) d', c=frame) # 48, 1152
time_token_spatial = time_token_spatial.unsqueeze(dim=1) # 48, 1, 1152
x = torch.cat((time_token_spatial, x), dim=1) # 48, 257, 1152
if y is not None:
label_emb = self.label_emb(y)
label_emb = label_emb.unsqueeze(dim=1)
x = torch.cat((label_emb, x), dim=1)
x = x + self.pos_embed
skips = []
for i in range(0, len(self.in_blocks), 2):
# print('The {}-th run'.format(i))
spatial_block, time_block = self.in_blocks[i:i+2]
x = spatial_block(x)
# add time embeddings and conduct attention as frame.
x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代葨εεΈ§tokenζ°; 771, 16, 1152; 771: 3 * 257
skips.append(x)
# print(x.shape)
if i == 0:
x = x + self.frame_embed # 771, 16, 1152
x = time_block(x)
x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 257, 1152
skips.append(x)
x = self.mid_block(x)
for i in range(0, len(self.out_blocks), 2):
# print('The {}-th run'.format(i))
spatial_block, time_block = self.out_blocks[i:i+2]
x = spatial_block(x, skips.pop())
# add time embeddings and conduct attention as frame.
x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代葨εεΈ§tokenζ°; 771, 16, 1152; 771: 3 * 257
x = time_block(x, skips.pop())
x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 256, 1152
x = self.norm(x)
x = self.decoder_pred(x)
assert x.size(1) == self.extras + L
x = x[:, self.extras:, :]
x = unpatchify(x, self.in_chans)
x = self.final_layer(x)
x = einops.rearrange(x, '(b f) c h w -> b f c h w', b=batch)
# print(x.shape)
return x
def UViT_XL_2(**kwargs):
return UViT(patch_size=2, in_chans=4, embed_dim=1152, depth=28,
num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=4,
use_checkpoint=True, conv=False, **kwargs)
def UViT_L_2(**kwargs):
return UViT(patch_size=2, in_chans=4, embed_dim=1024, depth=20,
num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=False,
use_checkpoint=True, **kwargs)
# 沑ζLδ»₯δΈηοΌUViTδΈLδ»₯δΈηimg_sizeδΈΊ64
UViT_models = {
'UViT-XL/2': UViT_XL_2, 'UViT-L/2': UViT_L_2
}
if __name__ == '__main__':
nnet = UViT_XL_2().cuda()
imgs = torch.randn(3, 16, 4, 32, 32).cuda()
timestpes = torch.tensor([1, 2, 3]).cuda()
outputs = nnet(imgs, timestpes)
print(outputs.shape)
|