import gradio as gr import numpy as np import torch from transformers import AutoProcessor, pipeline, BarkModel ASR_MODEL_NAME = "VinayHajare/whisper-small-finetuned-common-voice-mr" TTS_MODEL_NAME = "suno/bark-small" BATCH_SIZE = 8 voices = { "male" : "v2/en_speaker_6", "female" : "v2/en_speaker_9" } device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model=ASR_MODEL_NAME, chunk_length_s=30,device=device) # load text-to-speech checkpoint processor = AutoProcessor.from_pretrained("suno/bark-small") model = BarkModel.from_pretrained("suno/bark-small").to(device) sampling_rate = model.generation_config.sample_rate def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] def synthesise(text, voice_preset): inputs = processor(text=text, return_tensors="pt",voice_preset=voice_preset) speech = model.generate(**inputs.to(device)) return speech[0] def speech_to_speech_translation(audio, voice): voice_preset = None translated_text = translate(audio) print(translated_text) if voice == "Female": voice_preset = voices["female"] else: voice_preset = voices["male"] synthesised_speech = synthesise(translated_text, voice_preset) synthesised_speech = (synthesised_speech.cpu().numpy() * 32767).astype(np.int16) return sampling_rate, synthesised_speech title = "Cascaded STST for Marathi to English" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any Marathi to target speech in English. Demo uses OpenAI's [Whisper Small](https://huggingface.co/VinayHajare/whisper-small-finetuned-common-voice-mr) model for speech translation, and Suno's [Bark-large](https://huggingface.co/suno/bark-small) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=[gr.Audio(sources="microphone", type="filepath"), gr.Radio(["Male", "Female"], label="Voice", value="Male")], outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, allow_flagging="never" ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=[gr.Audio(sources="upload", type="filepath"), gr.Radio(["Male", "Female"], label="Voice", value="Male")], outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, allow_flagging="never" ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.queue(max_size=10) demo.launch()